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CHAPTER 1
INTRODUCTION

1.1 Statement of The Problem

Future space missions will require thermal transport devices with
the ability to handle transient pulse heat loads [1], especially
evaporator loads with high peak-to-average power ratios and
reversed- pulse heat loads at the condemser. Utilization of systems
wvhich are designed to handle pulse heat loads is impractical because of
the large masses required. Incorporation of thermal energy storage
(TES) into heat pipe rejection systems can be a promising method to
mitigate such pul.e heat loads.

Tilton et al. [2] and El-Genk et al. [3] have examined the
transient response of a heat pipe under external thermal loading at the
condenser. However, they did not offer any suggestion for dealing with
these pulse heat loads. Some configurations to reduce the dangers of
pulse heat loads have been proposed by Beam [4] and Sheffield [5], but a
detailed analysis of HP/TES mitigation techniques has not been
attempted. These concepts must be tested and understood so that they
may be integrated successfully into an overall thermal control system
design.

The surface-area-to volume ratio of the TES elements is an
important parameter in the melting and solidification process of the
PCM. 1In this research, the transient responses of three different
HP/TES configurations, as shown in Fig 1.1, were tested and compared

under a variety of heat load conditioms.
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1.2 Description of The Heat Pipe

The heat pipe is an innovative device capable of transferring large
quantities of heat through relatively small cross-sectional areas with
very small temperature differences. Moreover, a heat pipe requires no
external power input to sustain its operation. The concept behind the
heat pipe was first suggested by Gauler [6] in 1942. However, it was
not widely publicized until 1964 vhen Grover [7,8] and his colleagues at
the Los Alamos Scientific Laboratory independently reinvented the
concept. Grover also demonstrated the device effectiveness as a
high- performance heat transmission mechanism, coined the name "heat
pipe," and developed several applications for such systems. Since then,
the remarkable properties of the heat pipe have become appreciated, and
serious developmental work is still taking place.

A heat pipe consists of a closed tube or chamber with various
shapes whose inner surface is lined with a porous capillary wick as
shown in Fig 1.2. Vire screen, fiber glass, porous metal, and woven
cloth have all been used as the capillary wick. Narrow grooves, cut
lengthwise in the interior pipe wall, can also serve as a capillary wick
structure. The wick is saturated with the liquid phase of a working
fluid and the remaining volume of the tube contains the working fluid
vapor phase. Heat applied at the evaporator by an external source
vaporizes the working fluid in that section. The resulting difference
in pressure drives vapor from the evaporator to the condenser, where it
condenses releasing the latent heat of vaporization to a heat sink in
that section of the pipe. Depletion of liquid by evaporation causes the

liquid- vapor interface in the evaporator to enter into the wick surface
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Figure 1.2 Details of a conventional heat pipe




and a capillary pressure is developed there. This capillary pressure

pumps the condensed liquid back to the evaporator for reevaporation.
Thus, the heat pipe can continuously transport the latent heat of
vaporization from the evaporator section to the condenser section
without drying out the wick. This process will continue as long as the
flow passage for the working fluid is not blocked and a sufficient
capillary pressure is maintained. Heat pipes may be operated over a
broad range of temperatures by choosing an appropriate working fluid.

The amount of heat that can be transported by the latent heat of
vaporization is usually several orders of magnitude larger than that
vhich can be transported as sensible heat in a conventional convective
system. The heat pipe can, therefore, transport a large amount of heat
vith only a small unit size. Because only a very small temperature drop
occurs in the vapor flow, heat pipes have thermal characteristics orders
of magnitude better than any known solid.

However, unlike solid conductors, the heat pipe characteristics are
dependent not only upon size, shape, and material but also upon
construction, working fluid, and heat transfer rate. Moreover, heat
pipes operate under heat transfer limitations such as the sonic limit,
capillary limit, entrainment limit, and boiling limit. When any of
these limitations is encountered, the capillary wick structure may dry
out, leading to failure of the heat pipe.

In this research, a stainless steel grooved heat pipe using sodium
as the working fluid was studied. Grooved heat pipes, which use narrow
grooves as the capillary wick structure, have been used quite
successfully in practice. The advantages of a grooved heat pipe are its

lov capillary liquid flow resistance, high reliability, and ease of




fabrication. HNowever, the rather large nominal diameter of the grooves
makes both the capillary limit and entrainment limit quite low. Vinz
and Busse [9] and Barantsevich et al. [10] showed experimentally that if
the grooves in the evaporator section are wrapped with layers of fine
wick mesh, the capillary limit and entrainment limit can be improved

significantly while maintaining low capillary liquid flow resistance.

1.3 Literature Review

Analysis of transient heat pipe behavior has been the subject of
many recent studies [11-16]. Chang and Colwell’s [11] model for low
temperature heat pipes neglects the hydrodynamics of the vapor flow and,
therefore, cannot predict the vapor pressure and temperature variations
along the heat pipe. Kuramae [12] and Tilton et al. [13] did not
include vapor flow in their models. Bowman et al. [14] and Jang et al.
[15] applied too complicated vapor flow models which lead to lengthy
computation time and only represent the earliest stages of heat pipe
transient behavior effectively. The model developed by Seo et al. [16]
is impressive. However, this two-dimensional (axial and radial) model
cannot predict the transient behavior of a heat pipe with angularly
nonsymmetric boundary conditions. It would be desirable to assimilate
all of the current works by incorporating the strongest features of each
previous approach into a state-of-the-art model.

A transient three-dimensional numerical method is desired to model
the heat conduction through the heat pipe wall and wicks, including the

liquid in the grooves. Thibault [17] gave a comparison of nine




numerical schemes for the solution of the transient three-dimensional
heat diffusion equation. The major drawback of the pure explicit scheme
is that the stability criterion Ar/(AX)2 is very small and should not
exceed 0.5. The computations may become prohibitively expensive because
of the need to employ very small time steps. On the other hand, the
pure implicit scheme cannot be used efficiently for the solution of
multidimensional problems. In three dimensions it necessitates the
solution of large sparse matrices, which requires extremely long
computation time. After considering the relative accuracy, computation
time, and the computer core storage requirement, Thibault concluded that
alternating-direction- implicit (ADI) finite-difference methods offered
the best compromise. The ADI methods only require solving tridiagonal
matrices, so they have a tremendous advantage in computation time
compared to the pure implicit method. Chang and Colwell [11] and Jang
et al. [15] used two-dimensional ADI methods to model heat pipe
transients with great success. The conventional, two-dimensional ADI
method is unconditionally stable. However, when extended to three
dimensions, the conventional ADI method is conditionally stable, and
very small time steps are required to ensure convergence and stability.
In heat pipe modeling, a small Ar is needed due to the slender geometry
of the heat pipe, and only a very small time step At (about 0.001s) can
be used with the conventional three-dimensional ADI method. Chang et
al. [18] developed a nev three-dimensional ADI method by modifying the
conventional ADI method with an f-factor (0<f<1). This modification
allovs the time step to be increased by about 2 orders of magnitude
without significantly compromising the accuracy of the numerical

solution. They also showed that this new ADI method yields much higher




accuracy than the well-known Douglas’ [19] and Brian’s [20] ADI methods.
Details of this new ADI method, which was used to model the heat
conduction through the heat pipe wall and wicks, will be introduced in
Chapter 2.

In the numerical solution of heat conduction problems with phase
change (Stefan’s problem) by finite differences, enthalpy methods
[21-25] or heat capacity methods [26-30] can be used. The former
methods require either an explicit procedure which may lead to
convergence problems, or iteration at each time step if an implicit
procedure is used. The latter methods are subject to the problem of
jumping the latent heat peak, necessitating the use of very small time
steps to avoid underprediction of the phase change time. Recently,
Hsiao [31,32] proposed a new finite-difference method for Stefan’s
problem. In his scheme, the equivalent heat capacity at a node is a
function of the temperature at that node and all the surrounding nodes.
lisiao concluded that his method can avoid the problem of jumping the
latent heat peak and allows the use of a relatively large time step.
Hsiao’s method was tested, but a large energy balance error was found.
Pham [33,34,35] suggested a simple method which includes features from
both the enthalpy and heat capacity methods. Comparing this method with
other existing methods for test problems with exact solutions, Pham
pointed out that most of the methods agree to within 0.2% with the
analytical result, except for Hsiao’s method which yielded results with
up to 22} error. The low accuracy'of Hsiao’s method could be due to its
ambiguous theoretical basis. Pham also concluded that his method is
much faster than other methods. However, Pham’s method has a

singularity problem in finding the equivalent specific heat. In this




research, ve adopted the best features of Pham’s method and made some
modifications to improve on its weak points. Compared with analytical
solutions, the present method for melting and solidification was found
to have very good accuracy without the singularity problem of Pham’s
method.

The vapor flow in the evaporator of a heat pipe is dynamically
similar to pipe flow with blowing through a porous wall, while the
condenser section is analogous to flow with suction. The axial vapor
mass flow increases along the length of the evaporator region to a
maximum value at the end of the evaporator; it will then decrease along
the condenser region. The behavior of the vapor flow in a heat pipe is
also similar to that of a gas flowing through a converging-diverging
nozzle. In the heat pipe the area remains constant but the mass flow
varies. In a nozzle, the mass flow is constant but the cross- sectional
area is changed. There are many theoretical investigations of heat pipe
vapor dynamics [36-45). Most of this research work focuses on the vapor
flow itself instead of studying the vapor flow phenomena coupled with
heat pipe transients. The majority of these vapor flow models are very
complicated and impractical because their calculations require
prohibitively large amount of computer time. Bowman [46] reached a very
important conclusion that since the response time of the vapor dynamics
is very short compared to the heat transfer response time of the heat
pipe wall and wicks, the vapor flow can be modeled as a quasi- steady
process. He also studied the compressible vapor dynamics in a heat pipe
experimentally using air flowing in a porous tube with blowing and
suction along the vall. He modeled the vapor flow using a numerical

solution to the axisymmetric, unsteady Navier- Stokes equations and a




steady one-dimensional solution technique. Bowman concluded that it is
adequate to treat the vapor flow as steady and one-dimensional, and he
also provided suitable vapor pressure drop correlations. In our
research, this steady, one-dimensional vapor flow model was used and
coupled with the evaporation and condensation in the heat pipe.

The transient response of a heat pipe under normal operating
conditions is mainly controlled by its thermal capacity, conductance,
and vapor temperature drop, and is only slightly influenced by the
liquid dynamics. However, liquid dynamics become very significant when
dryout and rewetting occur in the wick. The dryout phenomena can cause
a dramatic temperature increase at the evaporator section and may affect
the overall heat transport device. To predict dryout of the wick, a
detailed liquid flow model in the wick is needed. Beam [47] and Ambrose
[48] et al. investigated the transient behavior of the liquid flow in a
heat pipe wick using a one-dimensional flat-front model. Their models
for the liquid flow utilized a simplified, lumped-parameter solution to
the energy equation to predict the temperature response and determine
the mass flux of vapor out of the evaporator region. Both Beam [47] and
Chang and Colwell [11] concluded that the transient response of the
working fluid in screen wicks is so fast that acceleration terms in the
momentum equation for the liquid are negligible. However, dryout
depends on the heated zone and the instantaneous local saturation.

Thus, if dryout is to be accurately predicted, the temporal dependence
of the saturation distribution must be taken into account. Ambrose [49]
developed a technique utilizing X-ray radiography to measure liquid
distribution in the porous wick structures of a heat pipe with beryllium

walls. He also presented a new transient liquid flow model to predict
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the continuous saturation distribution in the wick structure. The
measured saturation distributions compared favorably with those
predicted by the liquid model. However, solution of this new transient
liquid flow model requires knowledge of the saturation dependence of the
capillary flow properties, which can only be determined by experiment.
Kamotani [50] and Hwangbo et al. [51] developed two very similar liquid
flow models for a grooved heat pipe. Their models can predict the
variations of liquid meniscus contact angle and liquid pressure
variation along the heat pipe. However, they assumed the liquid
meniscus is always attached to the top of the groo@e side walls.
According to the experimental verifications given by Ogushi et al. [52],
this assumption is not correct. They also ignored the effect of vapor
pressure variation on the liquid meniscus contact angle. This is not a
good simplification for high temperature heat pipes where the vapor
pressure drop is always the dominant one. A complete capillary liquid
flow model for a screen covered groove like the one ve recommended in
this research is urgently needed in the near future to predict the
dryout and rewetting behaviors of a heat pipe with this type of wick. A
good capillary liquid flow model should include the effect of vapor
pressure changes on the liquid meniscus contact angle and also be able
to predict the saturation distribution analytically.

Kamotani [53] analyzed the thermal behavior of the condenser
section of a heat pipe with axial rectangular grooves. Some of the
vapor condensation occurs on the land areas between grooves. The liquid
forms a thin film on the land surface, and heat is removed from the
vapor through the liquid film. When the heat pipe is operating, the

liquid in each land area is drawn continuously into the grooves by
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capillary force and then transported to the evaporator section along the
grooves. Because of viscous drag, liquid flow in the grooves suffers a
pressure drop, and consequently the curvature of the liquid free surface
varies along the path. This meniscus variation will influence the
motion of the liquid film on the land and thus the condensation rate.
Kamotani claimed that the thickness of the liquid film on the land
surface is only on the order of several microns. In this research, ve
neglected the thermal resistance of the condensed thin liquid film
because it is miniscule when compared with the resistance of the heat

pipe wall.
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CHAPTER 2
AN IMPROVED ALTERNATING- DIRECTION- IMPLICIT METHOD

The conventional three-dimensional alternating-direction implicit
(ADI) method is modified by introducing an f-factor (0<f<1). This
modification allows the time-step limit be increased by a factor of 1/f
vith the solutions remaining stable and retaining high accuracy. This
new method is tested for two different boundary conditions: a constant
heat flux and a sudden heating of the surface to a constant temperature.
In addition, it is compared with the popular Brian and Douglas ADI
methods. Results show that the new ADI method has higher accuracy and

requires less computer storage than the Brian and Douglas ADI methods.

2.1 Introduction

The diffusion of heat in solids has numerous applications in
various branches of science and engineering. Generally, there are two
different approaches to deal with this type of problems: analytical and
numerical approaches. The analytical methods are usually only
applicable to linear problems with simple geometries. On the contrary,
the numerical methods are useful for handling practical problems
involving nonlinearities, complex geometries and/or complicated boundary
conditions.

Thibault [17] gave a comparison of nine numerical schemes for the

solution of the transient three-dimensional heat diffusion equation.
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Considering the relative accuracy, the computation time, and the
computer core storage requirement, he recommended that

alternating-direction implicit (ADI) finite-difference methods are among

the most preferred methods. The conventional two-dimensional ADI method
vas introduced by Peaceman and Rachford [54] in 1955. The advantage of
the ADI method is that only tridiagonal matrices need to be solved.
However, when extended to three dimensions, the conventional ADI method
is conditionally stable and very small time steps are required to ensure
convergence and stability. Other forms of the ADI method include the
Douglas method [19] and the Brian method [20]. Douglas and Brian ADI
methods are unconditionally stable, they possess the advantages of the
implicit scheme with no limitation on the size of the time step.
However, Thibault [17] pointed out that these two unconditionally stable
ADI methods cannot retain good accuracy if the time step is more than 2
times larger than the time-step limit required for the comventional ADI
method.

In this research, the conventional three-dimensional ADI method is
modified by an f-factor (0<f<1). A very important characteristic of
this modification is that it is consistent with physical considerations,
and is not just based on mathematical manipulations. This modification
allows the time-step limit to be increased by approximately a factor of
1/f without compromising significantly on the accuracy of the numerical
solution. This new ADI method is presented and compared with the Brian
and Douglas ADI methods for two cases where analytical solutions are
available. Compared with the Brian and Douglas methods, this new ADI
method has higher accuracy when large time steps are used. Also, the

present method requires less computer storage.
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2.2 Mathematical Formulation

First, we will look at of the formulations of the existing

three- dimensional ADI methods: conventional, Brian and Douglas methods.

. Then, the proposed new ADI method designed to overcome the shortcomings
of these existing ADI methods will be intrcduced.
The differential equations for the three-dimensional heat diffusion

equation can be written as

tor_ &1, 1, o (1)
LY AP PR
Introducing dimensionless parameters:
X:x , Y= Z:z
22 e >
T _ at
b= e
c
Eq. (1) becomes
00 _ 0% , 0% , &% @)
A A

. Conventional ADI Method
In the conventional ADI method, the heat diffusion equation is
solved implicitly in turn in the three coordinate directions for

one- third of the time increment each [55]. The basic finite-difference

15




equations for each of the three one-third time steps can be expressed

as:

U. . .-
Ci,3,k i,k (2 2 2
LT 6XUJ-:J + 8 0n9.]9 + 8 0n’J’k (3)
2 2
K 7’3 50 1,3, *0Vi 5,k ¢ 95045,k (4)
oy
i,j,k 1,5,k _ 2 2 2 .n+l
7 = 0Vik YL et %5k (5)

For convenience of analysis, we let AX=AY=AZ. After rearranging

Eq. (3), it becomes:

_ 3(AX
) [‘Lx?l' RN AR 0?,j-1,k $ 05kt gkt 0 ke (6)

Similar equations can be easily derived from Eqs. (4) and (5) for
the y- and z- directions. Physically, an increase in the central nodal
temperature or an increase in any one of the neighboring nodal
temperatures at the old time step should, with other conditions
remaining unchanged, lead to an increase in the central nodal
temperature at the next 1/3 time step. This implies that all the
coefficients on the right-hand side of Eq. (6) must have the same sign
(positive) as the coefficient of Ui,',k' In other vords, negative
coefficients on the right-hand side of Eq. (6) make the equations

physically unrealistic and may lead to low accuracy [56]. Same

16




statements can be made regarding to the equations for the y- and z-

directions.

On the right-hand side of Eq. (6), only the coefficient for 02 ik
3J Y

could be negative if the time step A7 is large. In order to have

positive coefficient for 02 K ° it is required that:

23
-(—A—x?f 0.75 | (7)

Since AX=AY=AZ, the equations for the y- and z- directions require
the same condition in Eq. (7) to hold. The other important thing ve
need to consider is the stability problem. We define the stability

parameter A as follows:

1= A7

n? ®

The stability criterion for the conventional three- dimensional ADI

method is [55]:

1 <1.5 (9)

Equation (7) is the condition for the solution of the conventional
three- dimensional ADI method to be physically realistic and have good
accuracy. Equation (9) is the criterion for the solution to be stable.

The main disadvantage of the conventional ADI method is that it is

conditionally stable and very small time step is required.

17




Brian’s ADI Method

The method proposed by Brian [20]) is similar to the conventional
ADT method. However, the successive approximations of the temperature
are calculated at the half-time step. The basic equations of Brian’s

ADI method are given as follow:

U, . -0
i,j,k "1,5,k _ 2 2
B7/2 OV, * 8 0n,J, l’m,J,k (10)
V., . -0
i,j,k "i,j,k _ 2 2y 2 11
B = 50,50 Y5k v Bl (11)
ooy
i,j,k '1,j,k 2 2 2 n+1
= . 12
T 5x la.]sk+6v »3 .k §0n’J’ ( )
Subtracting Eq. (10) from Eq. (11), we have:
V. . .-U. .
i,j,k "i,j,k 2 2
= . . 11
T 6y i,j,k dyolll’Jak (11a)
Subtracting Eq. (11) from Eq. (12), we have:
R AL
i,k "i,j,k i,k 2 n+1 2
1,), ],1/2 1,)1,X _ 5 0n,],k 6201;’1.,1( (12a)

Egqs. (10), (11a) and (12a) are the simplified equations suggested
by Brian. After rearranging these equations, the following equations

can be obtained:
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2(AX
- Ui-l,j,k + [‘ix?l‘ + 2 U5 sk Uik

(AX)
[ i 4] ’Ja 0;1)]"‘1’1‘ * 0!1133."'1’]‘ * 0?,j7k‘1 * 0?7jak+1 (13)

2
3(AY
. " Vietkt [‘LK?I’ + 2] Yiik Vi i1,k
2
_ 2(aY
: = B v 2 B B (14)

!AZ! +1
aJ,k" [ 2] 0n’J’ 0n’J ak"‘l

;
AZ 2(AZ (15)
AGE v, i,k ¥ [“rl‘ 0 ik~ Oi,5,k1 " 0 ket

Brian showed that his scheme is unconditionally stable. However,

t

there also exist negative coefficients on the right-hand sides of the
discretization equations (13)- (15). As we mentioned earlier, these

negative coefficients are physically unrealistic.

Douglas ADI method
Another unconditionally stable three-dimensional ADI method was
presented by Douglas {19]. The algorithm is given by the following

three equations:

i i,k i k _ 2 2 2
T 6 [Y,5,x 0?,j,k] + 6 0n,J, + 6 0n,J, (16)
V. . -0t .
i, i,k "i,3,k 2
it LI UR R WA RS L LR W
Y
*5z”li‘;j,k (17)
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0111?}4‘ Lk _ 142y N S 52 [v. o
o Ty 0% Uy 5t bk i,k * %5,
1 2 +1
5 00005t 055 (18)

Subtracting Eq. (16) from Eq. (17), we have:

i,j i,k 1 2 ]
e U LM UR PSR (172)
Subtracting Eq. (17) from Eq. (18), we have:

0n+1

ik ,jk_12 +1
= A7 == 2 6z[02,',k B og,j,k) (18a)

Equations (16), (17a) and (18a) are the simplified equations and

they can be rearranged as:

2
AX
05T et R e 0 08T gy
2
_ (X
- [EKFL' 5] 0rilj’k+0-5 01;-1,j,k+0.5 01'1 o k

i+1,j,
* 0?,j—1,k d 0?,j+1,k * 0?,j,k—1 * 0?,j,k+1 (19)

2
AY
05V iy [ir)_ ATV gm0V sy

!AY[
[ ] Ul ik ’Jsk 0.5 ogaj’lak 0.5 on’J+1 k (20)

+1 ! } +1 +1
- 0.5 0n1.]’k 1 ¥ [ T ] 0naJ9 - 0.5 0n’J’k+1
AZ ) _ (21)
%Jﬂv,h Ok 08 e 05 055

20




The unconditional stability of this algorithm was proved by Douglas
[19] . However, as in the Brian ADI method, the Douglas ADI method has
negative coefficients on the right-hand sides of the discretization

equations (19)- (21).

New ADI Method

As ve have seen above, the three existing ADI methods all have
shortcomings. The conventional ADI method is conditionally stable and
very small time steps are required to satisfy the stability criterion.
All three ADI methods have a common problem: negative coefficients in
their discretization equations vhich are physically unrealistic.

In light of the above observation, an improved ADI method is
proposed. The conventional three-dimensional ADI method is modified by
introducing an f-factor (0<f<1). Consider a control volume as shown in
Fig 2.1, the heat fluxes from the directions in which the equation is
implicit are multiplied by a factor (3-2f) and the heat fluxes from the
remaining four directions are multiplied by a factor f. As we can see,
the total heat flux counted in each direction through a full time step
remains unchanged. The finite-difference Eqs. (3)- (5) of the
conventional ADI method are modified by a f-factor and become the

following equations:

U, . ,-00 .
i,j,k "i,j,k _ 2 2 2
_umm_ = (326) 5V, 5o+ f 6y0!il,j,k + f 52"'1’,3-,1( (22)

i,j,k "i,i,k _ 2 2 2
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Eirst Steo 0 Qe n ol ..
n+1/3 a3
(3-20) Q7 . (3-20) a7’
4—”"
(0 Q) ) T
! ' n
(0 Q7 ey
Second Step (n Qi
hiked (3-21) o‘?f
n+1/3 n+1/3
0 oyl —e » 0 ayl
n+2/3
(3-20) Q, 5 ? s
0 Q})
(3-21) "
Third Step ikt ne2/3
.l, / (0 Oi,]"x,‘-(
n+2/3 n-2/3
® o) i —e » n ap
”
0 ay > 1
SO n+!
(3-20) a} )\,

Figure 2.1 The f-factor modified ADI Method
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ALy |
i3,k 'i,i,k _ ¢ 52 2 2 n+1
_L.L:Tmu.:_ = £ 6V st T8V 5t (326) azo'i‘,j,k (24)

After rearranging Eq. (22), the following discretization equation

can be obtained:

2
3(AX
- (32 Uy gy 30D, 3(3-2f)) U s (20 Uy sy

2
= [gﬁ%gl_ - 4f) 0?,j,k

+ £ 00 Kt £ 9 + £ 00 . + f 0?

i,j-1, i,j+1,k i,j,k-1 ;j,k+1 (25)

Similar equations can be easily derived from Eqs. (23) and (24) for
the y- and z- directions. On the right-hand side of Eq. (25), only the
coefficient for central nodal temperatures at previous time step could

be negative. To avoid it from becoming negative, we require:

0.75

At
— < (26)
(AX)
The stability criterion can be determined by the Von Neumann
method. Assuming that there exists an error function Ep q,r,n at each
bR B Aadh |
nodal point in the following form [57]:

vhere the parameter { is the amplification factor and n = 7/Ar, the

error will be bounded provided that:
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This is the condition for the solution to be stable. It can be
shown for these linear problems with constant coefficients that the

error function Ep q,r,n also satisfies the finite-difference equation
b B Aol |
(25) and two similar equations for y- and z- directions. With AX=AY=AZ,

substitution of Ep q,T,n from Eq. (27) into these equations gives:
143+

3/3 -4(f)sin® (ByAX/2) - 4(£)sin’ (A40X/2)
&= 3 (28)
3/} +4(g)sin (ﬂlAX/2)

3/) -4(f)sin® (8,8%/2) -4(F)sin’ (B,0%/2)
3/) +4(g)sin® (A,4X/2)

o= (29)

3/) -A(£)sin®(6,AX/2) -4(f)sin’ (B AX/2)
3/A +4(g)sin” (B40X/2)

3~ (30)

vhere g=3-2f.

These {1, (2 and 53 are the amplification factors for the
finite-difference equations for the x-, y- and z- directions,
respectively. Since these equations are used alternately, the stability

condition should be:

Rearranging {152{3 as follows:,
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3/4 -4(f)sin® (B,AX/2) - 4(f)sin® (A,4%/2)
3/A +4(g)sin’ (8,AX/2)
3/4 - 4(f)sin®(8,AX/2) -4(£)sin’(8,0%/2)
3/) +4(g)sin” (f4dX/2)
3/A -4(f)sin®(8,4X/2) -4(f)sin’(8,AX/2)
3/) +4(g)sin®(8,4X/2)
= [a]x[b]x[c]

£ibola= [

o

the stability condition can be written as:

1aiibjic; <1

The stability criterion can be obtained from either one of the

following three conditions:
lal<l, |bl<1 or [ci1

For the condition }a}<1, since the value of a is always less than

unity, we need only to consider the condition a)-1. This leads to:

1 < 1.5
(£)sin”(BghX/2)- (g f)sin® (B AX/2)

. It should be mentioned here that the parameter A defined in Eq. (8)
is always positive. The right-hand side of the above equation has a
minimun value when sin’(f,4%/2)=1 and sin’(f,AX/2)=0. So, the stability

criterion becomes:
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R (31)

Comparing Eqs. (26) and (31) with Eqs. (7) and (9), the time-step
limit for the conventional ADI method can now be increased by a factor
1/f by using this new ADI method. The computational results which will
be discussed later show that this modification allows the time-step
limit to be increased by 2 orders of magnitude with f=0.01 and the
solutions still remain stable with high accuracy.

Also, it should be mentioned, this new ADI method only requires
two- thirds of the computer storage compared to the Brian or Douglas
method. This is because only the temperatures at one intermediate time

step need to be stored.

2.3 Results and Discussions

To validate the present new ADI method, the finite-difference
solutions obtained are tested for a simple geometry with two different
boundary conditions: a constant surface heat flux and a sudden heating
of the surface to a constant temperature. In addition, it is compared
with the Brian and Douglas methods.

Consider a parallelepiped (-L1 ¢x <Ly, -L2 <y« L2, -L3 <z <
L3), shown in Fig 2.2, having constant thermophysical properties and
initially at a uniform temperature 00=1.0. At time 7>0, the
parallelepiped is allowed to have heat flow through its boundaries. To
obtain the temperature distribution within the parallelepiped, equation

(2) must be solved with the following initial conditions:
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Figure 2.2 Coordinate system: parallelpiped
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-1 <X¢1
at 7 =0, =1 for -Ly ¢ Y <L) (32)
L3 <2 <Ly

vhere L1 is chosen as the characteristic length Lc, Lé: L2/L1, and Lé:

Ly/L,.

Because of symmetry, only the region 0<X<1, 0<Y<LJ), and OSZSLé need

to be solved. The boundary conditions are:

ad ad il
7>0 X ol ) = =0 33a
ao)xzo ao)Y=0 33)Z=° .
= = = a 33b
) S 37)v=L5 32)z=Lé . (33b)

- q
where q, = -quyr— = dimensionless surface heat flux.
01

In this report, each numerical method will be used to solve the
three-dimensional heat diffusion equation for the two different boundary
conditions. To evaluate the accuracy of the various methods, an average
temperature erior is used. It is defined as the square root of the
average of the squares of the error between the predicted temperature

and the analytical temperature. It is given by:

LT[ ik

I % - 0

. . i,j,k "a

e o [|izlistkst Do) (34)
LK
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vhere 0a is the analytical dimensionless temperature.

Case I - Constant Surface Heat Flux

Consider a parallelepiped, initially at a uniform temperature
00:1.0. At time 7=0, all faces of the parallelepiped are exposed to a
constant surface heat flux ﬁwz 0.5. For a parallelepiped exposed to a
constant surface heat flux, the temperature distribution as a function

of time can be represented by the summation of three one-dimensional

solutions [17]:

0(X,Y,Z,7)= 0,
@
+2q T {2 [ierfc(igﬂillil)+ierfc(129illl1)]
¥ m=0 27 27

@® (2m+1)L’+Y
+ 3§ [ierfc( 2
o () (o))
) 2m+1)L2+2Z 2m+1)L2-Z
+ 3 [ierfc(———————g——)+ierfc(———————§——
n=0 27 27

(2m+1)L2-Y
___2__)]

)+ierfc(

)]} (35)

Presented in Fig 2.3 are the results obtained for a cube exposed to
a constant surface heat flux EV: 0.5 at time 7 = 2.0. Twenty nodal
points are used in each direction for this calculation. According to
Eq. (7), the time-step limit required for the conventional ADI method
(f=1.0) is 0.001875. In Fig 2.3, the solutions from the conventional
ADI method have very good accuracy with time step 0.002, but they become
unstable as time step is increased further. The Brian and Douglas
methods are unconditionally stable, but the negative coefficients in the
discretization equations cause their solutions to be physically

unrealistic. The results show that their solutions have good accuracy
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if time step is smaller than 0.5 but become more and more inaccurate if
the time step is increased further. On the contrary, the proposed new
ADI method with f = 0.1 and f = 0.01 is very accurate even when a time
step of 2.0 is used. The average temperature error is less than 0.007.
It can be seen from Eqs. (26) and (31) that this f-factor ADI method has
a much higher time-step limit than the conventional ADI method.

Shown in Fig 2.4 are the results at time 7 = 10.0 for a cube with
the same boundary condition of a constant surface heat flux Ew: 0.5.
For very small time steps, every method yields poor accuracy. This is
due to the large amount of calculations involved and the accumulation of
round- off errors. For time steps greater than 0.01, the Brian and
Douglas methods are always stable but they yield poor accuracy with
average temperature errors up to about 0.15. The new ADI method with f
= 0.01 predicts the results exceptionally well, the average temperature
errors are always less than 0.02 for time steps larger than 0.01.
However, the new ADI method with f = 0.1 only predicts well up to a time
step of 0.5. This is because the new ADI method with f=0.1 has a lower
time- step limit compared to that with £=0.01.

Figure 2.5 shows the variation of the average temperature error
with the f-factor at 7 = 10.0 for a cube with the same boundary
condition of a constant surface heat flux hwz 0.5. It can be seen, as
long as the solutions do not diverge, the temperature errors remain
almost the same with different values of the f-factor. In other words,
the value of f we chose does not influence the numerical results as long
as the solutions remain stable. The results for very small time step
A7=0.001 alwvays have larger errors. This is due to the accumulation of

round- off errors we have mentioned earlier. Also, we can see that the
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solutions are more stable with smaller values of the f-factor in the

sense that much larger A7 can be used.

Case II - Constant Wall Temperature

In this case, the parallelepiped, initially at a uniform
temperature 00=1.O, has its surfaces suddenly increased and maintained
at a constant temperature 0V = 2.0. The analytical temperature can be

easily obtained by using the method of separation of variables [58]:

2
0(X,Y,Z,7)= 6.+ % ¥ % a jexp[-& ;7
’ m=1n=11=1 "0 an1 )
cos[!?m ll'x]COS[‘2n_1ttY]COS[!zl-lztz] (36)
2 3
64(0 - 0

where a 1= (2m D) oL 1) ! 1)1 !2n-1!1 sin!21—1)1
mnl” [§2m—1!f] . [§2n lzr] !21 121

Presented in Fig 2.6 are the results obtained for a cube at time 7
= 0.2. At this time, the temperature field is still undergoing
transient development. Similar to Case I with constant surface heat
flux, the conventional ADI method becomes unstable if the time step is
greater than 0.002. The Brian and Douglas methods predict the
temperature field accurately only with a time step less than 0.02.
Their methods become inaccurate if the time step is increased beyond
0.02. The new ADI method with both f=0.1 and £=0.01 always yields
better accuracy than the other methods, the average temperature error

increases only slightly with the time step and is about 0.03 with a time
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step of 0.1.

Shown in Fig 2.7 are the results for a cube at time 7 = 1.0. At

this time, the temperature field has already reached steady- state. The
Brian and Douglas methods predict the steady-state temperature field
rather poorly if the time step is greater than 0.1. The average
temperature error is about 0.5 with a time step of 1.0. 0n the
contrary, the new ADI method predicts the steady-state results very
well. Vith a time step of 1.0, the new ADI method yields solutions with
an average temperature error about 0.024 for f=0.1 and about 0.016 for

£=0.01.

2.4 Concluding Remark

In this chapter, an f-factor ADI method for solving transient
three- dimensional heat diffusion problems is introduced. An important
characteristic of this new ADI method is that the resulting
finite-difference equations are consistent with physical considerations.
Compared to the conventional ADI method, this modification allows the
time step to be increased by about a factor of 1/f without compromising
the accuracy of the numerical solution. Compared with the conventional
ADI method and the Brian and Douglas ADI methods, this new ADI method

yields higher accuracy and requires less computer storage.
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CHAPTER 3
NUMERICAL MODEL

A numerical model and solution techniques have been developed to
predict the transient behavior of a high- temperature axially grooved
heat pipe with thermal energy storage. The heat transfer through the
pipe wall and wick, including the liquid in the grooves, was modeled as
three- dimensional in the radial, angular and axial directions. The
liquid and vapor flow dynamics were modeled using quasi- steady,
one-dimensional methods. The heat transfer within the phase- change
material, which was encapsulated in a cylindrical container, was modecled
as two-dimensional in the radial and axial directions. A nodal system
used to develop finite-difference approximations was depicted in Figs
3.1a and 3.1b. Finite-difference equations have been derived for
three-dimensional heat transfer under the following assumptions:

(1) The heat transferred through the wick and working fluid is by
conduction only, since liquid flow velocity is very low and
the liquid thermal conductivity is very high.

(2) The grooves are nearly filled with liquid. This is a good
assumption for high temperature heat pipes under normal
operation without burnout, because the thermal resistance of
liquid metal is much smaller than that of the heat pipe wall.

(3) The top lands of the groove structure in the evaporator
section are adiabatic because no evaporation occurs.

(4) The thermal resistance of the condensed liquid on the top
lands of the groove structure in the condenser section is very

small compared to the thermal resistance of the solid wall and
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(5)

(6)

can be neglected.

The liquid- vapor interface temperature is equal to the local
vapor temperature, because the thermal resistances due to
evaporation and condensation are very small.

The thermal resistance of the condensed liquid on the PCM
cylinder is much smaller than that of the phase- change
material, the surface temperature of the PCH cylinder is
assumed to be equal to the vapor temperature at the same axial
location. Hence, only a two-dimensional analysis is needed to
calculate the temperature and heat transfer within the PCM

cylinder because of angular symmetry.

A variety of boundary conditions for the thermal coupling between

the heat pipe and its heat source and sink have been included in the

numerical model:

Evaporator surface

(1) variable uniform heat flux, and

(2) variable uniform temperature.

Condenser surface

(1) radiation,

(2) radiation and variable uniform heat flux, and

(3) radiation and partially-covered variable uniform heat flux.

3.1 Heat Conduction Through Pipe Wall and Wick

The improved three-dimensional ADI finite- difference method [18]

wvas used to model the heat conduction through the wall and wick,
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including the liquid in the grooves. The advantage of the ADI method is
that only tridiagonal matrices need to be solved. However, the
conventional three-dimensional ADI method is conditionally stable and
very small time steps are required to ensure convergence and stability.
Since small Ar is needed due to the slender geometry of the heat pipe,
only very small At (about 0.001s) can be used with the conventional ADI
method. Other forms of the ADI method include the well-known Douglas
[19] and Brian ADI methods[20]. Douglas and Brian ADI methods are
unconditionally stable, they possess the advantages of the implicit
scheme with no limitation on the size of time step. However, Thibault
[17] pointed out that these two unéonditionally stable ADI methods
cannot retain good accuracy if the time step is more than 2 times larger
than the time-step limit required for the conventional ADI method. The
conventional ADI method was modified with an f-factor (0<f<1) as
introduced in Chapter 2. This modification allows the time step to be
increased by about two orders of magnitude without compromising
significantly on the accuracy of the numerical solution. It also was
shovn that this new ADI method yields much higher accuracy than the
Brian and Douglas ADI methods.

The conventional Douglas and Brian ADI methods have a common
problem: negative coefficients in their discretization equations which
are physically unreaiistic [56]. After the three- dimensional
finite-difference equations of conventional ADI method with cylindrical
coordinates are modified by an f-factor, they become the following

equations:
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1 1":}{2 Tk 32f) S2101/3 L £ 210 L g 820 (38)
3 it = (3-2f) 6T 3 03,5,k 21i,j,k
T 2 1/3 2 2/3 2.n+1/3
1 . 1 + + +
s gl - £ T“ + (3-2f) § T“ 6ZT!1‘, i (39)
Tﬂ+1 _ +2/3 /
1 75,5k ik 20+2/3 | ¢ 2:n+2/3 2 n+1
= - =fé T“,J,k f 5011.1‘,3.,1( + (3-2f) 6z’l‘li‘,j,k (40)

In the above equations the superscripts n, n+1/3, n+2/3, and n+1 denote

times ndt, (n+1/3)At,
rearranging Egs.

be obtained:

(n+2/3)At, and (n+1)t, respectively.

After

(38)- (40), the following discretization equations can

3pcri(Ar)2 +
e @20 K )+ (320 Ky 5 o
- (320 K (r A0 ™ /‘j (3-26) Ky, (r;- ) r‘;:i{j",k
3pcri(Ar)2 ri(Ar)
= It f (k j-* ) (Ao) - f (kk—+kk+) _(E)—f_] i,j,k
Ar)2 Ar)?
+ [ Kk, ™ . + [ £k, 1
[ Jr. (A0) ] i,j-1,k [ J+ri(A0) 1,j+1,k
r, (ir)? r, (dr)? (41)
[ fky W] Tkt [k '(A—Z)T] i,5,k+1
3pc(r;40)? v2/3
[—5— + (3-26) kv (3-2f) k; ] T"’J.,k
(3-2f) k. T"*f/? L - (326) X, T"*sﬁ’ )
3pc(riA0) ir. T (A0) r;(80)°
= [———-—Kt——-— fk._( -?) —(——72— k (ri——f) W
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- f (kg + Ky,) TZ_)T] e
r(80° i3 ;00°
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(r;49) /3 (r;40)2 (42)

+ L1 “k-—(i;)T] Tk s [k (T)T] ikt

3pc(Az)? "
[+ 320 (g +k ) 115 ¢
n+1 +1

- (32A) K T g - (3-2) kk+Tn’J’k+1

2
3pc(47) Ar Az)2 Ar Az
=l =g Tk (r+9) ren? Pl Tun
1

- k) 4_17“) i
2
b [ £k, (r+80) J_)_7 AR e L 2D r—@(—ﬁ_)-z
1

+2/3

i+1,j,k

. /3 0423 (43)
[fk;. _(_A%?]T"’J/lk [ £k, (J—A%),] s

Where p’s and c’s are the nodal density and specific heat based on local
properties and k’s are the thermal conductivities based on the harmonic

mean of two relevant nodal conductivities.

On the right-hand sides of Eqs. (41)- (43), only the coefficients
for central nodal temperatures at previous time step could be negative.

It was shown [18] that the time-step limit to avoid the coefficients
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from becoming negative can now be increased by a factor of 1/f. It was
also shown [18] that the stability criterion can be increased by the
same factor. So, it is clear that the time-step limit for the
conventional ADI method can now be increased by a factor of 1/f by using
this new ADI method. The computational results showed that this
modification allows the time-step limit to be increased by 2 orders of
magnitude with £=0.01 and the solutions still remain stable with very
high accuracy.

The resulting finite-difference approximations for all nodes form a
nonhomogeneous set of linear algebraic equations for each one- third
time- step:

For the first one-third time-step,:

. +1/3
By C;, 0 0 o 0 o TR oy
+1/3
Ay B, C, 0 0 0 0 0 Tg’j’k D,
+1/3
0 Ay By Cy 0 0 0 0 'rg’j,k Dy
+1/3 | = (44)
Ay By G ik D;
0 0 O
+1/3
0 0 0 0 Ayp Byp J LTy 50k L Dyl

for the second one-third time- step,:
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b b
r [ +2/ ’
B, C, 0 0 0 0 O Tg, , [ D,
b b b +2/3 3
Ay B, C, 0 0 0 0 0 T?,2,k D,
b b b] +2/3 3
0 Ay By Cg 0 0 0 0 Tg, : Dy
b b b b
A. B. C. n+2/3 | = | o’ (45)
i o] CJ T?,J,k DJ
0 0 O
b ) +2/3 b
L0 0 0 0 AygByg ) LTiNgd L Dy

and for the third one- third time- step:

_ " 7" - _ +1 . _ "
B, C, 0 0 0 0 0 T?’j’l D, |
" [1] ” n+1 1"
Ay By Cy 0 0 0 0 0 i, D,
0 A" B" C" 0 +1 "
3 B3 C3 0 0 0 i,j,3 Dy
n " " + 1 = " (46)
Ay By G Tk Dy
0 0 0
" " . +1 "
L0 0 0 0 Ay Bzl LT nd Dy

Since each coefficient matrix in Equations (44-46) is tridiagonal,
the sets of equations can be easily solved by using the tridiagonal

matrix algorithm (TDMA) with known initial and boundary conditions.
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This algorithm is very efficient for digital computation.

3.2 Melting and Solidification of PCM

Since the thermal resistance of the condensed liquid on the TES is
much smaller than that of the phase-change material, the surface
temperature of the TES is assumed to be equal to the vapor temperature
at the same axial location. Hence, if the PCHM is encapsulated in a
cylindrical container, only a two—dimensionéi analysis is needed to
calculate the temperature and heat transfer within the PCHM because of
angular symmetry.

In the numerical solution of heat conduction problems with phase
change, the heat diffusion equation can be formulated in either of the

following two ways:

o(r) T < div [k(T)grad(1)] (47)
or M - div [k(H)grad(T(H))] (48)

Equation (47) is the basis of heat capacity methods, while Eq. (48) is
the basis of enthalpy methods.

In heat capacity methods, the latent heat is represented by a peak
of small but finite width in the C(T) curve as shown in Fig 3.2. Since
C(T) is not a continuous function of Temperature, if a large time step
is used in the computation, a nodal temperature may jump past the

melting/freezing temperature range in one time step, resulting in the
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latent heat being ignored. This is termed "jumping of the latent heat
peak" and can be a major problem. To avoid it, very small time steps
have to be used.

Enthalpy methods do not suffer from the problem of jumping the
latent heat peak mentioned above because the enthalpy is a continuous
function of temperature as shown in Fig 3.3. However, the major
disadvantage of enthalpy methods is that because a high non linear
function, T(H), is involved, an explicit scheme must usually be
employed, with consequent stability problems. Implicit schemes have
been proposed by Longworth [59] and Furzeland [60], but they require
iteration at each time step and are less efficient in terms of computer
time [33,61]. _

To overcome the problem of jumping the latent heat peak vhich heat
capacity methods suffer, Hsiao [31,32] suggested that C(T) should be
linearly interpolated between the temperatures of adjacent nodes. Hsiao
considered a typical situation during a phase change process (see Fig
3.4). In this case only three nodes (inside the shades region) have
temperatures within the range of T,-AT and Tm+AT, and are able to
include the latent heat effect if heat capacity method is applied. All
other nodes next to the fusion front will employ the specific heat of
either the solid or liquid phase, depending on whether the nodal
temperature is less than Tm-AT or greater than Tm+AT, respectively.
Clearly, the latent heat effect is not properly included, and as a
result numerical error always arise. In light of the above observation,
Hsiao proposed a new scheme to improve the heat capacity model. The
nodal temperature is not used directly to yield the corresponding

specific heat of the node. Instead, the following averaged specific
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heat, which is derived from the node (i,k) and its surrounding nodes, is

employed:

1
CTi0) =7 (O y > Tiq 3 + C(Ty g 5 Tipq g
0T s Ty ) * O(T5 g 5 Ty geq) (49)

where C(Ti K’ Ti-l k), for example, represents an adjusted specific

b b
heat, which is determined by the physical status of the material with
temperature within the range of Ti,k and Ti-l,k'

In Hsiao’s new heat capacity method, the latent heat effect is
accounted for by using a linear interpolaiion between the temperatures
of adjacent nodes. As shown in Fig 3.4, the latent heat effect is
included in C(T; , , T. ) since the melting/freezing temperature

i,k i,k+1
interval falls in between T, , and T. . Hsiao concluded that this
ik ik+1

nev method can avoid the problem of jumping the latent heat peak and
allows the use of a relatively large time step. However, we have tested
Hsiao’s new method but a large energy balance error was found. Pham
[35] also pointed out that Hsiao’s new method yielded results with up to
227, error compared with the analytical result. The low accuracy of
Hsiao’s new method could be due to its ambiguous theoretical basis.

Pham [33-35) presented a simple and accurate method which combines
the good features of enthalpy methods and heat capacity methods. Pham’s
method can be used in conjunction with the two-dimensional ADI scheme

using the following procedure:

*
1. At the start of each time step, the enthalpy change AH at each

node is estimated from the known temperature T? k of that node and
]
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those of its immediate neighbors at previcus time step.
2. Since the enthalpy is a continuous function of the temperature for
the phase change material, we can determine an estimated new

*
temperature T, | from the following equation:
’

* *
Ti,k=fT[fH(Tlil,k) + AH; ] (50)

vhere T? K is the nodal temperature at previous time step.
b N
fT and fH are the temperature and enthalpy functions,

repectively.

*
3. When the estimated new temperature Ti k is known, the equivalent
b]
specific heat of each node can be obtained:

*

_ AH
ci,k" T’ . (51)
i,k i,k

*
4. With the equivalent specific heat i k known, we can use the two
]

dimensional ADI method to find the new nodal temperature T?+i.
b

One of the good features of Pham’s method is that it estimates the
nev temperature from the estimated enthalpy change to avoid the problem
of jumping the latent heat peak. The other good feature of Pham’s
method is that its theoretical basis is clear. However, Pham’s method
has a singularity problem in finding the equivalent specific heat in
step 2. If there is no enthalpy change in a particular node, the

*
estimated nev temperature Ti k will be equal to the previous temperature
3
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T

Eq. (51) due to the singularity problem. Fortunately, we have found a

K Then, we are not able to find the equivalent specific heat from
]

vay around this problem. If the melting temperature is Tm and the

latent heat effect is over a 2AT interval, let lefH(Tm-AT )

n+l_ .o * . . g
Hy=f, (T, +AT ) and H; X H; ,+ A0 . Ve redefine the equivalent specific
heat in Eq. (13) as follows.

r . n n+1
cS if Hi,k H: ik < H

. 1
(Hy-H,)/(28T)  if H < B} X uﬁ*k < H,

. n n+1
C1 . if “i,k R H1 X > H2
* AH . n n+1
ik = .o if “i,k < Hy< “1 k (52)
i,k "i,k

n+l
or Hi,k < H < H1 k

or I}, > H, > e

ik ik
1
| or “?,k > By > uf*k

where Cg and cy are the specific heats for solid state and liquid state.

After the modification, Eq. (51) is now used when only one of “g,k
or Hn+i falls in between H, and H2. In other words, Eq. (51) can only
be used when AH* is not equal to zero. Compared with analytical
solutions, this modified method for melting and solidification was found
to have very good accuracy and does not have the singularity problem
Pham’s method has.

Consider a one-dimensional melting problem with a solid in a

half- space initially at the melting temperature Tisz=950 K. At time
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zero, the temperature at the front surface of the solid is suddenly
heated to a constant Temperature T0=1300 K and melting takes place
immediately. Figs 3.5 and 3.6 show the comparisons of temperature and
melting front between the exact solution and the present
finite-difference solution during the melting process. The physical
variables chosen in the numerical experiment are kS=4.2 V/m-K, ky=2.1
W/n-K; ¢ =6280 J/K-kg, ;=7370 J/K-kg; PCH latent heat is 2.58*10° J/kg.
The finite-difference solution is obtained by using 100 equally spaced
elements along a length 1=0.01 m. Time step 4t=0.01s and a phase
transition temperature interval 2AT= 2.0 K are used for this example.
The dimensionless time is defined as T=t/(12/a1). The Stefan number is
defined as Ste=c1(TO-Ti)/L and is equal to unity in this problem. As it
can be seen in Figs 3.5 and 3.6, the present solution agrees very well

with the exact solution.

3.3 One-Dimensional Vapor Flow Model

The vapor flow was modeled by using a quasi- steady, one-dimensional
friction coefficient developed by Bowman [46]. In the evaporation
region, mass tlowing causes a slight steepening in the velocity
gradients at the pipe wall, leading to an increase in the friction
coefficient. Bowman pointed out that the favorable pressure gradient in
the mass blowing region influences the flow to remain laminar, even for
very large axial Reynolds numbers up to 108, In the condenser region,

vhere there is mass removal and an adverse pressure gradient, the flow

vas found to stay laminar at axial Reynolds numbers around 12000. In
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this research, the vapor flow was alvays assumed to be laminar because
the maximum axial Reynolds numbers are always much less than 12000. The
correlation of the vapor friction coefficient for laminar flow given by

Bowman can be expressed as:

2
£ = 38 (1.2337-0.2337 ¢0-0363 Be,) GMa"/5 (53)

where Ma is the Mach number based on the local mean axial velocity U,

Rew is the radial Reynolds number, and Re is the axial Reynolds number

defined as:

In these expression, p is the vapor flow density, g is vapor dynamic
viscosity, v is the radial velocity at the wall and Dh is the hydraulic

diameter of the vapor core.

The vapor flow was assumed to be compressible, one-dimensional and
quasi- steady. The governing equations for such a flow can be expressed

in terms of influence coefficients as presented by Shapiro [62]:

2
dMa dz dd

-F, afdz,p 40 (54)
pal D2 Dy oday

with the two influence coefficients given by:

4Ha2[1+ 151 Ia2]
- 2

F
f,a 1- Ma

(55)

58




2 -1 2
- 2[1+7Ma*][1 217- Ma“] (55)
’ 1-Ma

where f is the friction coefficient defined earlier by Eq. (53), 7 is
the ratio of specific heats, z is the axial coordinate, and & is the
mass flow rate.

. For the friction solution, a second expression is needed to relate
the change in total pressure (PO) to the change in mass flow rate and to

the friction coefficient. From Shapiro [62]:

dpP
0 dz dib

vhere
p. - s’ (58)
£0° 3

2
Fi p= ~1Ha (59)

]

Other useful relations are:

-1 4 2
Ta:1+12-l(a,b (60)
Tg 1+I2—:laa
P, (P), T
b_ Polb Ta y/91 o1
1 5 [Tg] (61)
: Py PTy
-2 - 62
7 B, (©2)
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These relate properties between two different axial locations, a

and b, in the vapor flow field.

3.4 Coupling of Vapor Flow With Evaporation and Condensation

To calculate the pressure and temperature variations in the vapor
flow, we need to know the evaporation and condensation rates. However,
these rates depend on the vapor temperature and liquid- vapor interface
temperature distributions. This means that the vapor pressure and
temperature variations are coupled to evaporation and condensation rates
simultaneously. In the present model, the evaporation and condensation
rates are coupled to the vapor temperature and pressure in an explicit
manner so that no iterations are required. However, we still have to
guess the vapor temperature at the evaporator end to calculate the vapor
temperature distribution. The vapor temperature at the evaporator end
can be estimated based on an assumption. Since the vapor demsity is
very small, we can assume that the heat absorbed by the vapor itself is
negligible compared to the total evaporation and condensation rates. In
other words, at every time step, the total evaporation rate and the
total condensation rate are equal. So, the following equation should be

always satisfied:
Oin = Qout (63)
vhere éin is the total evaporation rate and Qout is the total
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condensation rate (see Fig 3.7).

In this research, the one-dimensional vapor flow was coupled with

the local evaporation and condensation rates, as shown in Fig 3.7, using

the following procedure:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

The local evaporation rate or condensation rate Q&(k) at previous
time step, can be evaluated from previous local temperatures
Thg, j k& 2nd Ty(k).

Guess the new vapor temperature at the evaporator end T3+1(1), and
then use the evaporation and condensation rates to predict the
vapor pressure and temperature variations at new time step (Pn+1(k)
and T2 ().

As Tn+1(k) is obtained, we can calculate the new temperature
distribution in the heat pipe wall and wick o+l

i,j,k

The local evaporation or condensation rate Qn+1

can be evaluated from T3+1(k) and Tﬁﬁl
’ ’

(k) at new time step

+1
" C

The total evaporation rate ¥ 02; and condensation rate X Q an

be evaluated from Qn+1( k).

If A= X Q?;l - X Qg;% > €, go back to step (2) and iterate until A

< €.

After it converges, ﬁ3+1(k), T3+1(k), P3+1(k), and T?*} | at new
3d

time step can finally be obtained.
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3.5 Liuid Pressure Drop

In calculating the liquid pressure drop, we assumed that the groove
structures are fully wetted with working fluid and the liquid flow is
alwvays laminar owing to the generally low liquid velocity. The liquid

pressure drop can be obtained by using the following expression [63]:

dPy
- (64)

Here, Q is the local axial heat rate along a groove, and F1 is a

frictional coefficient for the liquid flow and is defined as:

2!

g1
Here, Ky is the liquid viscosity, Ag is the groove cross-sectional area,
A is the latent heat of evaporation, 1 is the liquid density, and K is
the permeability of the groove structure and is calculated from the
equation:

2
2erh 1

K = Tfiﬁéff (66)

vhere ¢ is the groove porosity, rh,1 is the hydraulic radius of the

groove structure defined as twice the cross-sectional area divided by
the wetted perimeter, and (fIRel) is a constant for laminar flow whose
magnitude depends only on the geometry of the groove structure and can

be obtained from Ref. 63.
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CRAPTER 4
TRANSIENT BEHAVIOR OF BP/TES SYSTEM
UNDER PULSE HEAT LOADS APPLIED AT THE EVAPORATOR

In this chapter, we will examine two important points. First, how
effectively can a PCM mitigate the adverse effects of pulse heat loads
applied at the evaporator? Second, is there any disadvantage associated
with installing phase- change material (PCM) in the vapor core? Also, if
there are significant difficulties associated with such a system, will
they be offset by the capabilities of the PCH itself?

It is clear that the main disadvantage of installing phase change
material in the vapor core of a heat pipe is the accompanying reduction
in the vapor flow area. This reduction in vapor flow area could cause
vapor pressure drop and vapor velocity to increase, and thus decrease
the heat pipe capability. Fortunately, the PCM itself can absorb a
large portion of the heat loads during the melting process after pulse
heat loads are applied. Some vapor will condense on the surface of PCM
cylinders and reduce the vapor velocity and pressure drop. The net
increase (or decrease) in vapor velocity and pressure drop due to the
installation of PCM is strongly dependent on how efficiently the PCM can

absorb the heat loads.

4.1 Limitations of the Heat Pipe

Circulation of working fluid is an important heat pipe design
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factor. The greatest possible circulation is required to obtain a
maximum heat transport capability from the heat pipe. Limitations on
the heat transport capability include capillary pumping ability
(capillary limit), choking of vapor flow (sonic limit), tearing of
liquid off the liquid- vapor interface by vapor flowing at high velocity
(entrainment limit), and disruption of the liquid flow by nucleate
boiling in the wick (boiling limit).

Figure 4.1 shows how transport capability varies with the operating
temperature for a screen-wrapped grooved heat pipe without anything
installed in the vapor core. These data are based on a total heat pipe
. length of 1.0 m with evaporator, condenser and adiabatic sections of
0.3m, 0.3m and 0.4m, respectively.'The heat pipe outside diameter is
assumed to be 1.9 cm (3/4 in) with an inside diameter of 1.4 cm. Liquid
sodium is used as the working fluid, and the screen wick has 200 meshes
per inch. As one can see, within the operating temperature range
between 900 and 1300 K, the entrainment limit places the greatest
restrictions on heat transport capability. At 950 K, the entrainment
limit is about 5.4 kW, which is equivalent to a uniform heat flux 30
V/cm2 applied at the evaporator. If an empty cylinder was installed in
the vapor core, the heat pipe capacity would be degraded due to the
reduction in vapor flow area. Fig 4.2 shows the operation limits for
the heat pipe with an empty cylinder with a radius of 0.4 cm mounted in
the vapor core. The entrainment, capillary, and sonic limits are
decreased due to installation of the empty cylinder. At an operating
temperature of 950 K, the entrainment limit is decreased by about 337 to
3.6 k¥, which is equivalent to a uniform heat flux 20 V/cm2 applied at

the heat pipe evaporator. Fortunately, filling the cylinder with PCH
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can offset this disadvantage by absorbing a large portion of the heat
loads during the melting process. Such a mechanism will be discussed in

the last section of this chapter.

4.2 Operation Under Normal Conditions

In this section, we will see how the HP/TES system responds under
the pulse heat loads which are less than the heat pipe operation limit.
Ve have applied the numerical model, introduced in Chapter 3, to a heat
pipe with 18 grooves using sodium as the working fluid. The material
for the heat pipe container is assumed to be type 316 stainless steel.
All axial and radial dimensions of the heat pipe are the same as those
just discussed in connection with Fig 4.1. A uniform heat flux is
applied to the evaporator, and heat is removed at the condenser by
radiative heat transfer to the surroundings which are maintained at 0 K.
The emissivity of the condenser wall surface is assumed equal to unity.
Lithium hydride, which has a latent heat of 2.58+100 J/Kg and a melting
temperature of 956 K, is used as the phase- change material.

For numerical modeling of the heat pipe wall and wicks, 8 and 40
nodes were chosen in radial and axial directions, respectively. Since
the heat pipe could be divided into 18 identical land- and- groove
subunits, only 4 nodes were needed in the angular direction for each
unit once symmetry was invoked. The transient responses of three
different HP/TES configurations were compared: (1) a heat pipe with one
large empty cylinder installed in the vapor core, (2) a heat pipe with

one large PCM cylinder, and (3) a heat pipe with six small PCM
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cylinders. The radius of the single large cylinders is 0.4 cm while

each of the small cylinders has a radius of 0.163 cm. These radii vere
chosen so that the large cylinder holds the same amount of PCM as the
six small cylinders combined. The hydraulic diameter for vapor flow is
about 0.82 cm for the heat pipe with a single large cylinder and about
0.75 cm for the one with six small PCM cylinders. For the numerical
modeling of the PCM, 40 nodes in the radial direction were chosen for
the large PCM cylinder and 16 nodes were used with the small one. A
phase transition temperature interval of 2ATm= 10.0 K wvas assumed and
the time step At= 0.1 s has been used for all the examples in this
report.

Figure 4.3 illustrates the transient response of four different
HP/TES configurations when a higher heat load is suddenly applied to the
evaporator. Before t= 10 s, all four different heat pipes are operating
at steady- state under a uniform evaporator heat load q= 4.3 V/cmz. The
average heat pipe temperature is about 940 K. After t= 10 s, a higher
heat load of q= 10 V/cm2 is suddenly applied to the evaporator. As
shown in the figure, the temperature of both heat pipes without PCM
increases quite sharply. It should also be noted that the temperature
of the heat pipe without anything installed in the vapor core shows no
difference with that of the one mounted with an empty cylinder through
the whole test period. The temperature of both heat pipes fitted with
PCH also increases rapidly immediately right after the heat load is
applied, but this steep temperature increase is arrested when the PCM
reaches its fusion temperature where melting begins. 0One should also
note that the temperature increase of the heat pipe with six small PCM

cylinders is much slowver than for the one with a single large PCM

69




[/

wo/4 01 03 £ b =b wouj

wndut yeoy ur 9seasour uappns ® Y1imM sodid reay jo ssuodsaa judisuedj

(spuod3s) swy]

000 0SS 00S OS¥ OO¥ 0SE O00€E 0Se 002 O0SI

001

0s

0

—hfhhbr-hP—-iF-\n$\r[b-bP-\-L-b--F-bhl-bbrr-PblPh—-hP-—h--—

¢y oandiy

1apou paduny -------

pPOYlaw JOUAILIJITP-9ITUTY

(soi1<1) ZWO/M 0704 =

(s01>1) _wo/m € ¥ =deasp

wd €91 0=y ‘9=IN .
wd p-o='y ‘I=IN ‘SIL /M
wd $0=ly "1=IN 'S3L O/Mm

0='N 'S31 Oo/m

4 O & @

’ T
ERZEERRABARAMADASNPARIN I I TS

- 006

Q = Q Q
a =] © e}
(=] <] a ]
g

= Q
- 0
= =

0O1) sanyvaadwa], JH 98vadAy

© o
E -
>y -y
L o] L o]

) B SM AL 20w SLSM e n . I M A s aa s B AN N R Sn SN S A An Shn S LA AR SL N SR BN Shan e BM ARG AL SM AN LM LA AR AR ANS
>t

S
&

70




cylinder during the melting process. The smaller PCM cylinders have an
advantage because their total heat transfer surface area is greater and
their heat conduction path is shorter compared to the configuration with
a single large PCM cylinaer. However, the six small PCM cylinders will
be completely melted earlier than a single large PCM cylinder. The six
small PCM cylinders are completely melted at about t= 100 s, and the
larger PCM cylinder does not completely melt until about t= 130 s.

After the PCM has completely melted, the temperature of both heat pipes
with PCM starts to increase rapidly until the heat pipes reach a new
steady- state condition with gq= 10 V/cm2. Both heat pipes without PCM
reaches their new steady- state conditions at about t= 350 s. Due to the
additional heat capacity of the phase- change materials, the other two
heat pipes with PCH reach the steady-state condition somewhat later at
about t= 580 s. We also applied a lumped model to predict the heat pipe
transient behavior. As one can see, the results from the lumped model
for the heat pipe without a PCM are in good agreement with those from
the finite-difference method. The heat pipe temperature predicted by
the lumped model averages about 10 K average lower than that obtained
using the finite-difference method. This discrepancy arises because the
heat removed from the condenser by radiation is overestimated by the
lumped model, which uses the average heat pipe temperature as the
condenser wall surface temperature.

An interesting output from the finite-difference solution is the
fraction of the heat conducted through the heat pipe wall at the
evaporator which is absorbed by the PCM during the melting process. In
other words, one would like to know what percentage of the heat

conducted into the vapor core significantly contributes to the vapor

71




flow. As shown in Fig 4.4, we define din as the total heat rate
transferred through the heat pipe wall at the evaporator and dt as the

total heat rate absorbed by the PCM. Both din and Qt are estimated from
the temperature distributions near the heat pipe inner wall and the

outside surfaces of the PCH cylinders.

Figure 4.5 plots the ratio between ét and éin for the same
operating conditions depicted in Fig 4.3. For the heat pipe with a
single large PCM cylinder, this ratio reaches 467 and then declines to

27% before the PCM is fully melted. If the heat pipes is equipped with

six small PCM cylinders, the ratio of dt to din reaches 527 and then
decreases to 407 before the PCM is fully melted. Apparently if the heat
pipe contains a single large PCM cylinder, no more than 737 maximum of
the heat conducted through the heat pipe wall cont, ouies to the vapor
flow during the PCH melting process. For the TES cunfiguration using
six small PCHM cylinders, the maximum fraction influencing vapor flow is
only 60%. These results imply that the increases in vapor pressure drop
and vapor velocity due to installation of the PCM can be significantly
offset by the capabilities of the PCM itself during the melting process.
Figures 4.6a and 4.6b show the axial variation of vapor pressure
and temperature for four different HP/TES configurations at t= 100 s.
The heat pipes without PCM have vapor temperature of 1082 K, which is
much higher than that of the other two heat pipe designs which
incorporate PCH. The heat pipe with a single large cylinder of
phase- change material has a vapor temperature of 985 K, and distributing

the PCM among six small cylinders lowers the vapor temperature to only
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968 K. The results in Figs 4.6a and 4.6b indicate that the vapor
pressure and temperature drops are strongly dependent on the operating
vapor temperature. A lower vapor temperature will result in a lower
speed of sound in the vapor and a higher Mach number for the flow. From
Eq. (53) in Chapter 3, one can see that higher Mach numbers will lead to
higher friction coefficients, resulting in larger total pressure drops.
Higher Mach numbers also cause the static pressure to drop even more.

In the adiabatic section, much less mass blowing or suction will take
place. Thus, the pressure decreases there are mainly due to friction
and will be smaller than those occurring in the evaporator. As
expected, these pressure and temperature losses are partially recovered
in the condenser section. Fig 4.6a also shows the vapor pressure drop
of the heat pipe without anything installed in the vapor core is smaller
than that of the one mounted with an empty cylinder due to larger vapor
flow area.

In Fig 4.7, the results from Fig 4.3 are compared with those
obtained using a larger time step and wider grid spacings. The time
step was increased from 0.1 second to 0.5 second and the grid spacings
Ar, Art and Az have been doubled. As shown in the figure, the longer
time step and coarser grid mesh have little effect on the solution. For
all practical purposes, the numerical results presented in Fig 4.3 are
essentially independent of the time step and grid spacing.

The transient responses of the heat pipes with a pulse heat load
applied to the evaporator from t= 10 s to t= 100 s are shown in Figs 4.8
and 4.9. As can be observed from Fig 4.8, the heat pipe respunds very
quickly, and the temperature starts to decrease as soon as the pulse

heat load is removed at t= 100 s. The temperature of the heat
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pipe without a PCM decreases quite rapidly after the pulse heat load is
removed. The temperature of the other two designs with PCM also
decreases immediately after the pulse heat load is removed, but the
decrease becomes very slow when the PCM reaches its melting point and
starts to solidify. The six small PCM cylinders will become completely
solidified sooner than a single large PCH cylinder. After the PCM
cylinders have completely solidified, the temperature of both heat pipes
incorporating a PCM begins decreasing again and the heat pipes return to
their initial steady-state condition with q= 4.3 H/cm2. For the heat
pipe with six PCM cylinders and the design with one large PCM cylinder
to return to the initial steady-state conditions after the pulse heat
load is removed requires about 1,620 seconds and 1,740 seconds,
respectively. Fig 4.9 shows the percentage of PCM melted versus time
for the same cases covered in Fig 4.9. One can see that the

phase- change material does not respond as fast as the heat pipe
temperature does. In fact, after the pulse heat load is remcved at t=
100 s, 27 more of the six small PCM cylinders and 10% more of the single
large PCH cylinder will still be melted by residual heat. It should
also be noted that the small PCM cylinders solidify more quickly than
the larger one can.

Figures 4.10 and 4.11 illustrate the results for the transient
response of the heat pipes with periodic pulse heat loads. The time
period of the pulses is 200 s and each pulse heat load lasts for 20 s.
These periodic pulse heat loads are applied before the heat pipes have
enough time to return to their initial steady- state operating condition.
The temperature response on each cycle is similar to the results shown

in Fig 4.8. 0On the other hand, temperature of the heat pipe without
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a PCM temperature regulation system goes up and down periodically. The
temperature of the heat pipe with six small PCM cylinders remains almost
constant over several cycles due to very efficient melting and
solidification. It is clear from Fig 4.11 that the percentage of molten
PCM for both heat pipes containing PCM cylinders continues to increase
as the cycles persist. This increase in the melted PCH fraction over
time takes place because the PCM does not have enough time during the
low- pover periods to solidify completely before the next pulse cycle

begins.

4.3 Operation Near HP/TES Limitation

As was mentioned earlier, the main drawback to installing PCM in
the vapor core of a heat pipe, neglecting the PCM ability to absorb a
portion of the heat load during melting, is that the heat pipe
capability is degraded due to a reduction in the vapor flow area. From
Fig. 4.2, the heat transport limitation for a heat pipe with a large
empty cylinder at temperature 950 K is equivalent to a uniform heat flux
of 20 V/cm2 applied to the evaporator. In this section, we will examine
the transient response of the HP/TES system under pulse heat loads ncar
this heat pipe limitation to see if the decrease in heat pipe capability
from the reduction in vapor flow area can be recovered.

Figure 4.12 shows the transient response of three different HP/TES
configurations when a pulse heat load near the heat pipe limitation is
suddenly applied to the evaporator. Before t= 10 s, all three different

heat pipes are operating at steady- state under a uniform
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heat load q= 4.3 V/cm2 in the evaporator. The average heat pipe
temperature is about 940 K. After t= 10 s, a higher heat load of q= 20
V/cm2 will be applied to the evaporator. As shown in the figure, the
trend of the temperature increases for all three heat pipes is similar
to the results seen in Fig 4.3 with lower pulse heat loads. However,
the PCH will be fully melted much earlier under the higher pulse heat
load. The six small PCM cylinders will finish melting at about t= 50 s
while the single larger PCM cylinder does not completely melt until
about t= 70 s.

Figure 4.13 depicts the axial variation of liquid and vapor
pressure for the heat pipe without a PCH at t= 12 s. At this moment,
the heat pipe has the greatest liquid and vapor pressure drops due to
the high liquid and vapor mass flow rates and low heat pipe temperature.
Apparently, the vapor pressure drop dominates the liquid pressure drop
for this type of heat pipe. As one knows, the heat pipe capillary limit
is strongly dependent on the overall liquid and vapor pressure drops.
Thus, for this type of heat pipe, the effect of the liquid pressure drop
on the heat pipe capillary limit can be neglected.

The total heat rates transferred through the heat pipe wall at the

evaporator for three different heat pipes are plotted in Fig 4.14. The

total pulse heat load applied at evaporator is ﬁez 3.64 kV (which is

equivalent to a uniform heat flux q= 20 V/cm2) after t= 10 s. For the

heat pipe without a PCM, only dinz 2.8 kW is transferred through the
heat pipe wall into the vapor core at t= 20 s. This reduction in the
heat transfer rate arises because a large portion of the heat load is

absorbed by the heat pipe wall due to the rapid temperature increases
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taking place at this moment. The ﬁ value rises gradually once the

in
heat pipe temperature increase slows down, and finally approaches Qe
upon reaching another steady-state. 0On the other hand, for both heat

pipes with PCM most of the heat loads are transferred through the heat

pipe wall into the vapor core at t= 20 s. Heat transfer to the vapor
core is more efficient for the PCH designs because the heat pipe

temperature increases are being slowed by the PCM melting process. The

bin value for both heat pipes with PCH remains almost constant
throughout the melting process. It then drops suddenly as soon as the
PCH is completely melted, and the heat pipe temperature starts to

increase rapidly.

Figure 4.15 shows the ratio dt/din for both heat pipes equipped
with PCM and operating under pulse heat loads near the heat pipe
limitation. It is quite apparent that the PCH responds very quickly to
pulse loading. The PCH starts to melt and absorbs a large portion of
the heat immediately after the pulse heat loads are applied. For the
heat pipe with one large PCM cylinder, this ratio reaches a maximum of

58% and then decreases to 387 before the PCM is completely melted. For

the one with six small PCM cylinders, the ratio dt/din peaks at 717 and
then declines to 537 when the PCH is totally melted. In effect, the
heat pipe with one large PCH cylinder has at most 627 of the heat which
is conducted through the heat pipe wall contributing to the vapor flow
during the PCH melting process. In the design with six small PCM
cylinders, the maximum fraction adding to the vapor flow is only 47}.

As we mentioned earlier, the decrease in the vapor flow area due to the
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installation of PCM causes the heat pipe capability to decrease by about
33%. From the results shown in Fig 4.15, it is clear that this decrease
in heat pipe capability can be completely offset by the capabilities of
the PCH itself during the melting process.

Comparing the results between Fig 4.5 and Fig 4.15, one finds that

the ratio ét/din is larger with higher pulse heat loads during the PCM
melting process. Since the heat pipe temperature remains about the same
during the PCHM melting process for both pulse heat loads, the heat
removed from the condenser by radiation will also be similar. Thus, the
percentage of the heat loads directly contributing to the vapor flow
during the PCM melting process wili be lower under higher pulse heat
loads. Ve can, therefore, predict that the HP/TES system can operate
without burnout under uniform heat fluxes even greater than q= 30 V/cmz,
the heat pipe limitation present without anything installed in the vapor
core. Not only can the PCM recover the decrease in heat pipe
performance due to the reduction in vapor flow area, but it can actually
increase heat pipe transport capability.

In the design of a HF/TES system, one should choose a PCM with a
melting point slightly higher than the normal operating temperature.
Then if a pulse heat load higher than the heat pipe limitation is
applied, the PCH can respond fast enough to begin melting and absorb
some of the heat before the heat pipe reaches its operating limit and
burns out. To reduce the chance of completely melting during the pulse
period, the latent heat of fusion of the chosen PCM should also be as
large as possible.

The concept of incorporating phase- change material inside a
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low- temperature heat pipe (such as a vater heat pipe) is also sound if
the goal is to limit the temperature extremes encountered when the heat
load is time-dependent. For most low temperature heat pipes, the vapor
pressure drop is small, and vapor flow usually does not play an
important role in determining the heat pipe capability. Thus the
increases in the vapor pressure drop and vapor velocity caused by the
reduction in flow area would not have a significant effect on heat pipe

capability.
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CHAPIel 5
TRANSIENT BEHAVIOR OF HP/TES SYSTEM
UNDER REVERSED- PULSE HEAT LOADS APPLIED AT THE CONDENSER

The transient behavior of a high-temperature axially grooved heat
pipe (HP) which incorporates thermal energy storage (TES), under
reversed- pulse heat loads applied at the condenser is presented in this
chapter. Liquid sodium, which is used to remove the heat released by a
pover generator, circulates through a HP/TES cooling device from which
the heat is rejected into space. The transient response of three
different HP/TES configurations under reversed-pulse heat loads are
compared: (1) a heat pipe with a large empty cylinder installed in the
vapor core, (2) a heat pipe with a single large PCM cylinder, and (3) a
heat pipe with six small PCH cylinders. The results for a heat pipe

vith and without an adiabatic section will be presented, respectively.

5.1 Description of The Problem

Future space missions will involve thermal transport devices with
the ability to handle reversed-pulse heat loads. Figure 5.1 shows a
schematic diagram of the cooling system for a power generator. A
certain amount of heat is continuously being released by the power
generator and removed by the liquid sodium loop. The sodium loop
circulates through the HP/TES cooling device, where the heat is rejected

into space. Under normal conditions, the system is operating at steady-
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Figure 5.1 Schematic diagram of the cooling system for a power
generator
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state. Suddenly, an i ident laser strikes the condenser section of the
HP/TES cooling device. Under such severe operating conditions, the heat
released by the power generator can no longer be removed by the HP/TES
cooling device, and the reversed- pulse heat load caused by the incident
laser will be reversely transferred back into the liquid sodium loop.
Incorporation of thermal energy storage (TES) into heat pipe rejection
systems can be a promising method to mitigate damage from reversed- pulse
heat loads. The transient response of different heat pipes (with or
wvithout phase- change material) unuer reversed-pulse heat loads will be

studied in this chapter.

5.2 Analytical Model

The numerical model used in this chavter to predict the transient
response of the HP/TES cooling 3ystem has already been described in
Chapters 3 and 4. In the numerical solutic., the heat pipe evaporator
wall surface temperature was assumed equal to the sodium loop
temperature because the surface heat transfer coefficient is very high.
The liquid sodium loop temperature can be predicted by the following

equation:

AT
loo N 0
Cloop — BT = Qg - Qe (67)

Since this study focused only on a heat pipe unit, it should be

noticed that Cloop and bg in Eq. (67) are the total sodiim loop heat
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capacitance and the heat rate released from the power generator,

respectively, divided by the total number of heat pipes in the system.
The heat rate released from the power generator dg is always positive

and remains constant. ée is defined as the hudat rate transferred from
the sodium loop to the heat pipe, and is evaluated from the temperature
gradient in the heat pipe wall. It can become negative when a reversed
heat load is applied. If liquid sodium with velocity 1 m/s is
circulating through the heat pipe, a very high surface heat transfer
coefficient (about 5+10° V/mzk) can be obtained. Since the heat
transfer coefficient is so high, we will assume that the heat pipe
evaporator wall surface temperature is equal to the sodium loop
tempcrature.

We also applied a simple lumped- heat- capacity model to predict the
transient behavior of the heat pipe without a PCH. The average heat

pipe temperature was predicted by the following equation:
= Q- 4, (68)

vhere Q= hAe(Tloop' Thp)

" 4
Q.= Ac("Thp " Gpey)

Eq.(68) is coupled with Eq.(67) to calculate the sodium loop and
heat pipe temperatures. For the lumped- heat- capacity model, an average
surface heat transfer coefficient between the liquid sodium loop and the

heat pipe evaporator of h = 5*104 w/m2K vas assumed. The heat
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capacitance of the heat pipe Chp is about 540 J/K.

5.3 Results for Heat Pipes With Adiabatic Section

Ve applied the numerical model to a grooved heat pipe for which the
specifications were given in Chapter 4. The total length of the heat
pipe vas 1.0 m with an adiabatic section having length of 0.4 m. Under
normal condition, heat was transferred from the sodium loop to the heat
pipe evaporator section by forced convection and was removed at the
condenser by radiation.

Figure 5.2 shows the transient response of three HP/TES
configurations with Cloop = 1000 J/K when a reversed heat load is
suddenly applied at the condenser. Prior to t= 10 s, the three heat
pipes all are operating at steady- state conditions with the temperature

of the sodium loop maintained at 950 K. Under this steady- state

condition, the total heat rate transferred from the sodium loop, de’ is
about 0.78 kV (for an average surface heat flux of about 4.3 V/cm2) and

is equal to the total heat rate removed at the condenser by radiation

heat transfer, dc‘ The average heat pipe temperature is about 945 K. A
heat transfer rate of 0.78 kW is continuously released from the power
generator to the sodium loop throughout the entire operating period.
After t= 10 8, a reversed heat load of Qpe,= 10 V/cm2 is suddenly
applied to the condenser. As one can see, the temperature of the heat
pipe without PCM increases rapidly. On the other hand, the temperatures

of the other two heat pipes with PCM also increase rapidly immediately
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after the reversed heat load is applied. But the rapid temperature
increase is arrested after the PCM reaches its melting temperature and
starts to melt. It can also be seen that the temperature increase
during the melting process with six small PCM cylinders is slower than
with one large PCM cylinder. This slower temperature rise occurs
because the total surface area of the six small PCHM cylinders available
for heat transfer is larger and the heat conduction path is shorter
compared to the case with one large PCM cylinder. However, the six
small PCM cylinders will be completely melted earlier, at about t= 80 s,
compared to t= 110 s for the one large PCM cylinder. After the PCH is
completely melted, both PCH equipped heat pipes undergo rapid
temperature increases until they reach a new steady-state condition.

Due to the complexity of the present heat pipe problem, we are not
able to predict the error of the numerical solutions accurately because
no analytical solution is available. However, in order to retain high
accuracy, the time step and grid spacings used in this research were
chosen to satisfy the stability and accuracy conditions in Ref. [18].
Under these conditions, the error of the present numerical solutions
should be only a few percent. To further validate the numerical
solutions, we applied the numerical model to the same problem depicted
in Fig 5.2 by using a smaller time step At= 0.025 s and reducing the
grid spacings in the r and z directions by half for both the heat pipe
and PCN. As we can see from Fig 5.2, the solutions remain almost the
same vith smaller values of the time step and grid spacings.

Figure 5.3 shows the variations of heat input, ée’ and heat output,

Qc, for three different HP/TES configurations with Cloop= 1000
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J/K under a reversed heat load applied at the condenser. The total heat

rate transferred from the sodium loop to the heai pipe evaporator, de’
can be determined by knowing the temperature gradient inside the wall

along the evaporator. The total heat rate removed from the condenser,

ﬁc’ is the summation of the heat removed by radiation and the reversed

heat load. Prior to t= 10 s, all three heat pipes are operating at
steady- state with a heat input of ﬁe= 0.78 kV equal to the heat output

of ﬁc= 0.78 kV. After a reversed heat load Qpey= 10 V/cn2 is applied at
t= 10 s, the heat outputs at the condensers of the three heat pipes all
become negative, indicating that there are external heat loads being
added at the condensers. However, these heat outputs all begin to
increase due to greater heat removal by radiation at the higher
condenser wall temperatures. The variation of heat output is similar to
that of the heat pipe temperature because the heat output depends
strongly on the condenser wall surface temperature.

The heat input variation is a strong function of the sodium loop
heat capacitance Cloop’ After the reversed heat load is applied, the
heat input of the heat pipe without PCH decreases very rapidly in the
first 10 seconds and is reversed to negative. After t= 20 s, the heat
input begins to increase because the heat output increases, and the
reversed heat flov effect becomes less and less. The heat inputs of the
other two heat pipes fitted with PCH also decrease rapidly immediately
after the reversed heat loads are applied. After the PCM starts to melt
at about t= 15 s, the heat inputs increase very rapidly. This is
because most of the reversed heat load is absorbed by the PCM so that

the heat pipe temperature increase becomes very slow. However, the heat
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inputs decrease slightly during later stages of the melting process
because the PCM capability to absorb the reversed heat load is
declining. The heat inputs for the two heat pipes equipped with PCH
drop again and reverse to negative after the PCH is completely melted
because the heat pipe temperature starts to increase rapidly. It can
also be seen that the heat input of the heat pipe with six small PCM
cylinders is higher than that of the one with a single large PCH
cylinder during the melting process. The greater heat input occurs
because the temperature of the heat pipe with six small PCM cylinders is
lover. The three different HP/TES configurations all tend to reach a
new steady- state temperature with same original heat input and heat
output equal to 0.78 kV.

Figure 5.4 shows the transient response of three different HP/TES
configurations with Cloop= 10000 J/K under a reversed heat load suddenly
applied at the condenser. Before t= 10 s, all three heat pipes are
operating at steady-state conditions as we mentioned in the earlier
case. After t= 10 s, a reversed héat load of Qpey= 10 V/cm2 is applied
at the condenser. As can be seen from the figure, the temperature
increase of all three HP/TES configurations is very slow. Because of
its high heat capacitance, the sodium loop acts like a huge heat sink
wvhich can absorb most of the reversed heat loads and arrest the heat
pipe temperature increase. It is clear that with such a high sodium
loop heat capacitance, installation of PCM to mitigate the reversed heat
loads is unnecessary.

Figure 5.5 shows the variations of heat input and heat output of
three different HP/TES configurations with Cloop= 10000 J/K under a

reversed heat load applied at the condenser. Compared with the results

102




do PROT 7%aY PasIaAdl
® Japun Y/r 00001 = 30 q1ta adtd 1eaq jo asuodsaa juatrsuwel] p'g aandry

(spuooas) awy]

- 0E6
ﬁ
- 096
[
L0668 >
3
L 0201 &
s 0
. T
/¢t 00001 = d900ig - 0501 M
(soL<}) NEotS oL = A®Jp [ m
wo €91 0=y ‘9=IN . o [ u
wo pro=ly ‘i=IN ‘s3L /m ¥ Fo111 &
31 0/m © , 3
-O¥Ll %
P
- 0LLT
[ 0021
otet

103




d
= oﬁc yita sadrd jeay jo Indino jeaq pue jndur jesy jo suorjerte

peo] 789y pasiaral ® Japun Y/ 00001

’g'g' aandyy
(spuodas) auayy,
00E 02 0¥ 012 081 OSIT 02} 086 09 oc 0
.FL..—r.~.P-.FL-L~PL-»’.-.?-.-—.
-Oﬁl
80~
L m
90— 3
| -~
ey m.
L #0- 3
W -
80— 2
L -
Loo P
(ag
: ]
20 &
Nr¢ 00004 = 99°ig ” Lo
(so1<i) wo/m 01 = *°'b m.‘.o =
3
wo €91°0='y ‘9=IN ' . o -9°0
wo o=ty '1=IN ‘S3L /m ¥
3L o/m O 460
0’1

104




shown in Fig 5.3 for the case with Cloop= 1000 J/K, the heat inputs of
all three heat pipes decrease very rapidly and all are reversed to
negative after the reversed heat load is applied. With such a high
sodium loop heat capacitance, the sodium loop itself behaves like a
massive heat sink and can absorb the reversed heat loads easily. The
heat inputs of the two heat pipes with PCM are reversed less than the
one without PCM after the condenser heat loads are applied. However,
they immediately drop again after the PCM is completely melted.

Figure 5.6 presents the transient response of the heat pipe without
PCH under reversed heat loads as predicted by the lumped- heat- capacity
model. It can be seen that the results from the lumped model have very
good agreement with those from the finite-difference method. The lumped
model can predict the average heat pipe temperature and the heat flow
input /output at the evaporator and condenser very well for the heat pipe
without PCH. The heat pipe temperature predicted by the lumped model is
about 10 K lower than that obtained from the finite-difference method
throughout the time period of interest. This discrepancy arises because
the heat removed from the condenser by radiation is overestimated by
using the average heat pipe temperature as the condenser wall surface
temperature.

Figure 5.7 shows the axial variation of vapor mass flow rate for
two different HP/TES configurations with 0100p= 1000 J/K. At t= 10 s,
both heat pipes are operating at steady-state conditions with forward
heat loads applied at the evaporators. All the vapor mass flow rates
are positive along the two units. The vapor mass flow rates increase in
the evaporator section, remain almost constant in the adiabatic section,

and then decrease in the condenser section. As can be seen from Fig
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5.5, the vapor flow of the heat pipe without a PCM is totally reversed
at t= 60 s since both heat input and heat output are negative. For the
heat pipe with six small PCK cylinders, the vapor flow becomes two
separate flows with opposite directions because the heat input is
positive while the heat output will be negative. Evaporation occurs at
both evaporator and condenser sections, while the vapor condenses in the
adiabatic section and on the outside surfaces of the PCM containers. As
shown in Fig 5.7, the vapor mass flow rate is positive only in the
evaporator section and part of the adiabatic section. It is negative
over the remainder of the heat pipe. One should also note that the
vapor mass flow rate at the adiabatic section of the heat pipe with six
small PCH cylinders changes more rapidly than it does when no PCH is
present. This difference occurs because a considerable amount of vapor
condenses on the outside surfaces of the PCM containers during the
melting process.

Figures 5.8a,b show the axial variation of vapor pressure and
temperature for two different HP/TES configurations with C100p= 1000
J/K. At t= 10 s, both heat pipes are operating at steady-state
conditions. The variation of the vapor pressure for both heat pipes is
almost identical since there is little difference between the heat pipe
temperatures and vapor mass flow rates. At t= 60 s, both heat pipes
have a higher vapor pressure at the condenser end because the vapor
flows are reversed. The vapor pressure drop along each heat pipe at t=
60 s is much less than at t= 10 s. For the heat pipe without a PCM, the
smaller pressure drop is mainly due to its higher temperature, which
strongly influences vapor pressure variation as discussed in Chapter 4.

For the heat pipe with six small PCM cylinders, the lower pressure drop
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is a result of higher heat pipe operating temperature, smaller vapor
mass flov rate and the shorter vapor flow path resulting from the two
separate vapor flows. One should also note that the axial variation of
vapor temperature is very similar to that of vapor pressure.

The transient responses of the heat pipes under a reversed-pulse
heat load applied to the condenser from t= 20 s to t= 80 s are shown in
Figs 5.9 and 5.10. As is apparent from Fig 5.9, the temperature of all
three heat pipes responds very rapidly and starts to decrease as soon as
the reversed- pulse heat load is removed at t= 80 s. The temperature of
the heat pipe without PCM decreases very rapidly after the
reversed- pulse heat load is removed. The temperature of each unit with
PCM also decreases rapidly immediately after this time, but the decrease
becomes very slov when the PCM reaches the melting point and starts to
solidify. The six small PCM cylinders will completely solidify earlier
than a single large PCM cylinder. After the PCM has completely
solidified, the temperature of both heat pipes with PCM resumes its
decrease, and the heat pipes gradually return to their initial
steady- state operating conditions. Approximately 1,660 seconds are
required for the heat pipe with six small PCM cylinders to return to the
initial steady- state condition after the reversed- pulse heat load is
removed, while the configuration with a single large cylinder needs
2,260 seconds. Fig 5.10 shows the percentage of PCHM melted versus time
for the same case depicted in Fig 5.9. One can readily see that the PCM
does not respond as rapidly as the heat pipe temperature does. In fact,
after the reversed-pulse heat load is removed at t- 80 s, 147 more of
the six small PCM cylinders and 25% more of the one large PCM cylinder

vill still be melted before the phase change ceases. It is also clear
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that the small PCM cylinders solidify faster than the larger one does.

Figures 5.11 and 5.12 illustrate the results for the transient
response of the heat pipes with periodic, reversed-pulse heat loads.
The time period is 2000 s and each of the reversed-pulse heat loads
lasts 60 s. The temperature response in each time period is similar to
the results shown in Fig 5.9. The temperature of the heat pipe without
a PCM simply oscillates up and down periodically. The temperature of
the heat pipe with six small PCH cylinders remains almost constant
throughout the whole period due to the very efficient melting and
solidification of this PCM configuration. As shown in Fig 5.12, the
molten fraction of the PCM for the heat pipe with six small PCM
cylinders does not differ from one cycle to the next. This is because
the six small PCM cylinders solidify completely at the end of each
cycle. The percentage of PCH melted for the heat pipe with one large
PCH cylinder continues to increase as the pulse cycles continue. This
occurs because the one large PCM cylinder does not have sufficient time
to solidify completely at the end of each time period for this cyclic
rate.

Figures 5.13 and 5.14 present the results for the heat pipes under
periodic, reversed-pulse heat loads with a shorter time period of 600 s.
Fach of the reversed-pulse heat loads also lasts 60 s. It is clear from
these figures that the temperature of both heat pipes with PCM is under
control during the first cycle. However, the temperatures become very
high during the next two cycles. This failure of the PCM temperature
regulation mechanism occurs because the time period is too short for the
PCM to solidify completely at the end of each cycle. At the end of the
first cycle, only about 50% of the PCM is solidified for
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either heat pipe. After the second reversed- pulse heat load is applied,
the PCM soon becomes completely melted, and the heat pipe temperature
increases rapidly. The PCM will never again have time to solidify and
thus becomes useless for thermal regulation purposes after the second
cycle. Obviously, cycle time is a vital consideration in the design of

a HP/TES cooling system to handle periodic, reversed-pulse heat loads.

5.4 Results for Heat Pipes Without Adiabatic Section

In this section, the numerical model will be applied to a grooved
heat pipe without an adiabatic section under partially reversed heat
loads applied at the condenser. The specifications of the heat pipe are
the same as those given in Chapter 4, except there is no adiabatic
section. The total length of the heat pipe is 1.0 m with the evaporator
and condenser sections having lengths of 0.3 m and 0.7 m, respectively.
The numerical model predicted the transient response of the HP/TES
cooling system under a variety of partially reversed heat loads as shown
in Fig 5.15.

Figure 5.16 shows the transient response of three HP/TES
configurations with C1oop = 1000 J/K when a reversed heat load is
suddenly applied to 75% of the condenser surface. Prior to t= 10 s, the
three heat pipes all are operating at steady- state conditions with the
temperature of the sodium loop maintained at 950 K. Under this

steady- state condition, the total heat rate transferred from the sodium

loop, Q,, is about 1.78 kW (for an average surface heat flux of about
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Figure 5.15 A heat gipe without an adiabatic section operates under a
partially reversed heat load
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9.8 V/cmz) and is equal to the total heat rate removed at the condenser

by radiation heat transfer dc' The average heat pipe temperature is
about 938 K. A heat transfer rate of 1.78 kW is continuously released
from the power generator to the sodium loop throughout the entire

operating period. After t= 10 s, a reversed heat load of q 20

rev
V/cm2 is suddenly applied to 75% of the condenser surface. Compared
with the results shown in Fig 5.2, the PCM is completely melted earlier
due to the higher heat loads applied at the evaporator and condenser.
The six small PCM cylinders will be completely melted at about t= 40 s
and the single large PCM cylinder at t= 60 s. As one can see from the
figure, the temperature of both heat pipes fitted with PCM also
increases very swiftly during the PCM melting process. This rapid
temperature rise happens because that the radial temperature gradient
inside the PCM is very large under such high heat loads. The surface
temperature of a single large PCM cylinder is about 90 K higher than the
PCM melting point at t= 50 s. In designing an HP/TES cooling system to
handle such high total reversed heat loads, one must install more PCM
cylinders in a heat pipe with a larger vapor flow area. Thus the heat

load to each PCH cylinder can be reduced, the radial temperature

gradient inside the PCHM can be decreased, and the PCH melting process
will last longer. The variations of the heat imput, ée’ and heat
output, ﬁc’ as shown in Fig 5.17 are similar to the results already
given in Fig 5.3.

Figures 5.18 and 5.19 present the transient response of three

HP/TES configurations with Cloop = 1000 J/K when a reversed heat load is
suddenly applied to 50% of the condenser surface. The six small PCM
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cylinders and the one larger PCM cylinder will be completely melted at
t= 50 s and 80 s, respectively. Although both the fraction of the
condenser surface directly exposed to the reversed heat loads and the
total load itself are reduced from the previous case, the temperature of
both heat pipes still increases rapidly during the PCM melting process.
The surface temperature of the single large PCM cylinder is about 80 K
higher than the PCM melting point at t= 70 s.

Figures 5.20 and 5.21 show the transient response of three HP/TES
configurations with Cloop = 1000 J/K when a reversed heat load is
suddenly applied to 25% of the condenser surface. The six small PCM
cylinders and the single large PCM cylinder will now be completely
melted at t= 80 s and 120 s, respectively. As one can see, the
temperature of the heat pipe with six small PCM cylinders only increases
about 10 K during the PCM melting process. The surface temperature of
the single large PCM cylinder is about 40 K higher than the PCM melting
point at t= 110 s; however, the surface temperature excess is only about
12 K for the small PCM cylinders at t= 70 s.

Figure 5.22 shows the axial variation of vapor mass flow rate for
the same case as shown in Fig 21. At t= 10 s, both heat pipes are
operating at steady-state conditions with forward heat loads applied at
the evaporators. All the vapor mass flow rates are positive along the
twvo units. The vapor mass flow rate increases at the evaporator section
and then decreases at the condenser section. At t= 60 s, each vapor
flow in both heat pipes becomes two separate flows moving in opposite
directions. Evaporation occurs at both the evaporator and the portion
of the condenser section where the reversed heat load is applied, while

the vapor condenses in the remaining portion of the condenser section
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and on the outside surfaces of the PCM containers.

The transient responses of the heat pipes under a reversed-pulse
heat load applied to 25% of the condenser surface from t= 20 s to t= 80
s are shown in Figs 5.23 and 5.24. The trends depicted by the transient
responses are similar to the results shown in Figs 5.9 and 5.10.
However, compared to the results in Figs 5.9 and 5.10, the PCM cylinders
are completely solidified much more quickly after the reversed-pulse
heat loads are removed. 0Only about 1,000 seconds are required for the
heat pipe with six PCH cylinders to return to its initial steady-state
condition after the reversed-pulse heat load is removed, and the
configuration with one large cylinder can accomplish this in about 1,270
seconds. This shorter adjustment time can be achieved because the heat
vill be removed more quickly from a heat pipe with a larger condenser

area.

130




I9SUIPUOD JO %Q7 SIDA0D YOTyM
peoy 1eay asind -pasiardl ® aapun sadid jvay jo ssuodsar juwaisuel] e€z-g aangy g
(spuodas) awayl

00ST 0S€! 002t 0S01 008 09 009 OS¥y OOE OS] 0

Lasaasdlaa s baa sl aaaadlaanaalaaaatlasa s daaaadaaaaod s
- 066

z

[1 ]

2

[; ]

-

o

o

3

o

0\0 mN = )°h°\° u

wo 0L =%| ‘wo 0f =9 m.

(sog<i) wo/mo = =

(sog>1>02) WO /M 02 = A8 <
wo g91°0=ty ‘'9=IN . (a]
woy 0=ty ‘i=IN ‘'S3L /m ¥
S31L o/m O

131




J9SU3PUOD JO %GZ 543400 YD1YM peoy 3vay asynd -pastarax
® Japun sadrd jeaq I0y Wi} SNSIIA Pal[aw RJ4 jO wOlI04 pz°¢ oIndiy

(spuodas) suyy,

00St 0SEel 0021 0S01 006 0S4 009 0S¥y 00E OS! 0

‘wlelulnlolololulylalyinintalulalnielolulqlulolyly 4]
118
Y |02
0t
3 oy
- \ oS
% G2 = ABI% . X
wo 0z =%y ‘wo ge =°) _ : 09
(sgosi>1>08) ,wo/M 0 = 0L
(s08>1>02) ,wo/m 02 = Aaip
08
wo g91°0=ly ‘9o=IN ° . o]
wo p o=ty ‘1=IN 'S3L /M & 06
001

(%) paawt )d jo uonaog

132




CHAPTER 6
CONCLUSIONS

In this research, the transient behavior of a high- temperature
grooved heat pipe with thermal energy storage (TES) under pulse heat
loads was modeled using a three-dimensional ADI finite-difference
method. A phase- change material (PCN) encapsulated in cylindrical
containers vas used as the TES. Two different types of pulse heat loads
applied to the heat pipe were studied. 0One was high-pulse heat loads
applied at the heat pipe evaporator. The other one was reversed- pulse
heat loads applied at the condenser. It was found that the PCM is very
effective in mitigating the adverse effects of both types of pulse heat
loads. The six small PCM cylinders are more efficient than the single
large PCM cylinder in reducing the rapid increase in heat pipe
temperature under pulse heat loads, and they can also handle periodic,
pulse heat loads better since they solidify faster.

Since the heat pipe capillary limit is dependent on the overall
liquid and vapor pressure drops and the vapor pressure drop dominates
the liquid pressure drop for this type of heat pipe, the effect of the
liquid pressure drop on the heat pipe capillary limit can be neglected.
The vapor pressure and temperature drops of the heat pipe were found to
be strongly dependent on the operating vapor temperature. The vapor
flow can be reversed or become two opposing flows under reversed heat
loads. The numerical results also indicated that the heat inputs and
outputs of the heat pipes in the cooling system under reversed- pulse
heat loads are strongly dependent on the sodium loop heat capacitance.

The main disadvantage of installing phase- change material in the
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vapor core of a heat pipe is the accompanying reduction in the vapor
flow area. This reduction in vapor flow area could cause the vapor
pressure drop and vapor velocity to increase significantly, and thus
decrease the heat pipe capability. Fortunately, the PCH itself can
absorb a large portion of the heat loads during the melting process
after pulse heat loads are applied. Some vapor will condense on the
surface of PCM cylinders and reduce the vapor velocity and pressure
drop. From the numerical results, one can find that not only can the
PCH compensate for the decrease in heat pipe transport capability due to
the reduction in vapor flow area, it can also actually handle the pulse
heat loads very effectively.

In the design of an HP/TES system, one should choose a PCM with a
melting point slightly higher than the normal operating temperature.
Then if a pulse heat load higher than the heat pipe transport limitatiop
is applied, the PCH can respond fast enough to begin melting and absorb
some of the heat before the heat pipe reaches its operating limit and
burns out. To reduce the chance of complete melting during the pulse
period, the latent heat of fusion of the PCM should be as large as
possible. Also, the cycle time is a vital consideration in the design
of an HP/TES cooling system to handle periodic, pulse heat loads.

The concept of incorporating phase- change material inside a
low- temperature heat pipe (such as a water heat pipe) is also sound if
the goal is to limit the temperature extremes encountered when the heat
load is time dependent. For most low- temperature heat pipes, the vapor
pressure drop is small, and vapor flow usually does not play an
important role in determining the heat pipe transport capability. Thus

the increase in the vapor pressure drop and vapor velocity caused by the
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reduction in flow area would not have a significant effect on heat pipe
capability.

An improved three- dimensional ADI finite-difference method used to
model the heat conduction through the heat pipe wall and wick was
developed in this research. An important characteristic of this new ADI
method is that the resulting finite-difference equations are consistent
vith physical considerations. Compared to the conventional ADI method,
this modification allows the time step to be increased by about 2 orders
of magnitude without compromising éignificantly on the accuracy of the
numerical solution. Compared with the well-known Brian and Douglas ADI
methods, this new ADI method yields higher accuracy and requires less
computer storage.

The equivalent heat capacity method proposed by Hsiao for the
Stefan problem was tested in this research, but a large energy balance
error wvas found. Similar conclusion was also given by Pham. Comparing
with exact solutions, Pham pointed out that the Hsiao method yields
results with up to 22% error. The low accuracy of the Hsiao’s method
could be due to its ambiguous theoretical basis. Pham suggested a
simple and accurate method which includes the good features of the
enthalpy and heat capacity methods. One of the good features in the
Pham method is that it estimates the new temperature from the estimated
enthalpy change to avoid the problem of jumping the latent heat peak.
However, the Pham method has a singularity problenm.

In this report, we adopted the best features of the Pham method for
the Stefan problem and made some modifications to improve on its weak
points. This modified Pham method was used in conjunction with a

two-dimensional ADI scheme. Compared with analytical solutions, the
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present method for melting and solidification was found to have very
good accuracy without the singularity problem of the Pham method.

Liquid dynamics in a heat pipe become very significant when dryout
and rewetting occur in the heat pipe wick. However, dryout depends on
the heated zone and the instantaneous local saturation. Thus, if dryout
is to be accurately predicted, the temporal dependence of the saturation
distribution must be taken account. A complete capillary liquid flow
model is needed to predict the dryout and rewetting behaviors of a heat
pipe. A good capillary liquid flow model should include the effect of
vapor pressure changes on the liquid meniscus contact angle and also be
able to predict the saturation distribution.

It vas found that the lumped-heat- capacity model can predict the
average heat pipe temperature and the heat flow input/output at the
evaporator and condenser very well for the heat pipe without PCM. Ve
have also checked the total energy balance and found the error is less
than 17 at each time step. To further validate the numerical solutions,
ve applied the numerical model to some problems by using different time
steps and grid spacings. The results reported here were obtained with a
sufficiently fine grid spacing and time step so that numerical results

are essentially independent of the time step and grid spacing.
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APPENDIX
Listing of The Computer Program
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OO0 OO0O0O00O000000O000000000000000000000000000CO0

3-D COMPUTER PROGRAM FOR TRANSIENT BEHAVIOR OF AXIALLY GROOVED HEAT
PIPE UNDER PULSE HEAT LOADS

CKL -THERMAL CONDUCTIVITY OF LIQUID (W/M-K)
CKLHL -THERMAL CONDUCTIVITY OF LIQUID LIH (W/M-K)
CKLHS ~-THERMAL CONDUCTIVITY OF SOLID LIH (W/M-K)
CKSS -THERMAL CONDUCTIVITY OF SOLID 'W/M-K)

CKpP -NODAL THERMAL CONDUCTIVITY (W/M-K)

CL -LIQUID HEAT CAPACITY (J/K-KG)

CLHL -HEAT CAPACITY OF LIQUID LIH (J/K-KG)

CLHS ~HEAT CAPACITY OF SOLID LIH (J/K-KG)

cp ~NODAL HEAT CAPACITY (J/K-KG)

Cs -SOLID HEAT CAPACITY (J/K-KG)

DENL -DENSITY OF LIQUID (KG/M3)

DENLHL -DENSITY OF LIQUID LIH (KG/M3)

DENLHS -DENSITY OF SOLID LIH (KG/M3)

DENP -NODAL DENSITY (KG/M3)

DENS -DENSITY OF SOLID (KG/M3)

DQVDA(K) -LOCAL INWARD HEAT FLUX ON THE VAPOR INTERFACE (W/M2)

DRS -SPACE INCREMENT IN RADIAL DIRECTION IN SOLID (M
DRW -SPACE INCREMENT IN RADIAL DIRECTION IN WICK (M)
DT -TIME STEP (SEC)

DTHETA -ANGULAR INCREMENT (RADIANS)

DTV1 ~HALF TEMPERATURE INTERVAL OF VAPOR FOR SEARCHING TV(1l) (K)
Dz ~SPACE INCREMENT IN AXIAL DIRECTION (M)

EMISS -EMISSIVITY

HFUSLH ~FUSION HEAT OF LIH (J/KG)

HTCAMB ~AMBIENT HEAT TRANSFER COEFFICIENT FOR THE CONLCZENSER (W/M2K)
NG ~NUMBER OF GROOVES

PV(K) ~VAPOR THERMDYNAMIC PRESSURE (N/M2)

QEVAP ~HEAT FLUX ON THE WALL OF THE EVAPORATOR (W/M2)

QVIN ~NODAL HEAT TRANSFER FROM HEAT PIPE WALL TO VAPOR FLOW (W)
QV(K) ~LOCAL HEAT TRANSFER FROM HEAT PIPE WALL TO VAPOR FLOW (W)
R -NODAL RADIUS (M)

RI ~INSIDE RADIUS OF HEAT PIPE WALL (M)
RMENIS ~-MENISCUS RADIUS (M)

RO -OUTSIDE RADIUS OF HEAT PIPE WALL(M)
RW ~VAPOR CORE RADIUS (M)

SIGMA -STEFAN-BOLTZMAN CONSTANT (W/M2K4)

SUMQVI -TOTAL EVAPORATION RATE (W) .

SUMQVO -TOTAL CONDENSATION RATE (W)

TAMB -AMBIENT TEMPERATURE TO THE CONDENSER (K)
TMELLH -MELT TEMPERATURE OF LIH (K)

T(I,J,K) -NODAL TEMPERATURE (K)

TV(K) =-VAPOR TEMPERATURE (X)

XL -HEAT PIPE LENGTH (M)

CEALEALLBTLTAFBALFFIILBIULBLVVLILBLLFLLAFLVTAUBILBLBLLBABIABBV993%%

REAL *8 TVOLD(100),TV(100),TE(40,100),TTE(40,100),DTV(100)
REAL *8 T(8,5,100),TW(5,100),TT(8,5,100),TOLD(8,5,100)
REAL *8 TVO (100}, TVNEW(100) ,DPV(100),DPL(100)
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C
Cc

C

o

cC
ccC
cc

C

CHOOSE RUNNING CASE:

DIMENSION P(100),Q(100),CKNR(S5,100)

DIMENSION QWALL(5,100),DQVDAN(100),DQDATN(100)
DIMENSION THPAVG(20000), TVAVG(20000) ,CTIME (20000)

DIMENSION QV0(100),QVNEW(100),QVOLD(100)

COMMON /HPIPE/ TV,DQDATE(100),2L,DZ,NZ,NDT,QVTES(100),
SNTESTU, TIME, KBURN, NWRITE, XWRITE, NGROV, RW,NADIA,PV(100)
COMMON /VCORE/ DQVDA(100),DQDABAR(100),IPCM,PVTTL(100)
$ ,TVREAL(100),PLM,DTES,DVAPOR, DWICK, DHYDRO, XMMAX, KPLM

$ ,NEVAP,XTI,DENV(100)

COMMON /PCM/ TVOLD,TE, TTE,DTV,DT,NADI,NRTES,DTHETA, RTES,

$ TSTART, NTHETA, QPCM, QMELT, QPCMTTL
COMMON /LIQ/ QV(100),PL(100), SUMQVI, KPVMIN, PCMAX, DPVPLMAX,
$ CL,NZP1,WIDBAR, DEPTHG, DENL,VISLIQ, TENLIQ, LAMBDA

IPCM=1
METHOD=1

FRELAX=0.02

IF{METHOD.EQ.1) FRELAX=0.0

CHONSE TIME STEP (SEC)

DT=0.1
NDTEND= 6000

SPECIFY THERMAL ENERAGY STORAGE

NTESTU= 0
RTES=0.004
NRTES= 40

NTESTU= 6
RTES=0.001633001
NRTES= 10

NWINCH=200

CHOOSE TIME TO WRITE

NWRITE= 100
XWRITE=1.0*NWRITE
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IPCM=1 (WITHOUT PCM):
METHOD=1 (EXPLICIT);

IPCM=2 (WITH PCM)
METHOD=2 (IMPLICIT)




OO0

cC
cC

[eNeNe!

CONVERGENCE CRITERIA FOR THE EVAPORATOR END VAPOR TEMPERATURE
EPSQVK=0.01

SPECIFIED TRUNCATION ERROR FOR THE VAPOR FLOW
EPSV=0.01
SPECIFIED BOUNDARY CONDITIONS OF HEAT TRANSFER ON THE HEAT PIPE WALL
QEVAP= 4.3*10000.0
TF=941.0
HTCF=37043.0 )

EMISS=1.0
SIGMA=5.669E-8
TAMB= (.0

KBURN=(

HEAT PIPE GEOMETRY
NGROV=18

NTHETA=4

NTHEPG=4

NRS=4

NRW=4

NR=NRS+NRW

NZ= 40
NEVAP=12
NADIA= 28
2L= 1.0
NZP1=NZ+1

PLM=NEVAP*DZ
KPLM=NEVAP

RO=0.009525
RI=0.008262
RW=0.007000

NWIRE=NWINCH/0.0254
RC=1.0/(2.0*NWIRE)

WIDBAR=2.0*3.1416* (RI+RW)/2.0/2.0/NGROV/2.0
DEPTHG=RI-RW
DWICK=2.0*RW
DTES=2.0*RTES

DRS= (RC~RI) /NRS
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DRW= (RI-RW) /NRW
DTHETA=2*3,14/NTHETA/NGROV
D2=ZL/N2Z

XTI=NEVAP*DZ

C GROOVE GEOMETRY
JING2=2
JING3=3
C THERMAL CONDUCTIVITY, HEAT CAPACITY AND DENSITY
C SOLID:STAINLESS STEEL, LIQUID:SODIUM
CKsS=18.4 '
CKL=75.7
CS=530.0
CL=1305.0
DENS=7744.0
DENL=882.0
NTHEP1=NTHETA

WRITE (6, *) 'NTESTU=',NTESTU

WRITE (6, *) 'RO=',RO, 'PL=', 2L

WRITE (6, *) "N2=',NZ, 'NR=',NR, 'NRS=',NRS, ' NRW="', NRW
WRITE (6, *) 'QEVAP=', QEVAP, 'SIGMA=',SIGMA, 'TAMB="', TAMB

C HEAT PIPE STARTING TEMPERATURE

TSTART= 940.0
DO 30 K=1,N2
DO 33 J=1,NTHEP1
DO 36 I=1,NR
T(I,J,K)=TSTART
TOLD (I, J,K)=TSTART
TW (J, K) =TSTART

36 CONTINUE

33 CONTINUE
TV (K) =TSTART
TVOLD (K) =TSTART
QV(K)=0.0
DQVDA (K)=0.0
QVTES (K)=0.0
DQDATE (K)=0.0
DTV(K)=0.0

30 CONTINUE

QETTL=0.0

QCTTL=0.0
QTES=0.0
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SUMQVI=0.0
TIME=0.0
DO 60 NDT= 1,NDTEND

C PULSE HEAT FLUX SPECIFICATION
IF (NDT.LE.100) PULSE=1.0
IF (NDT.GT.100) PULSE=10.0/4.3

CcC IF (NDT.LE.100) PULSE=1.0
ccC IF(NDT.GT.100.AND.NDT.LE.1000) PULSE=10.0/4.3
cC IF(NDT.GT.1000) PULSE=1.0

cC IF(NDT.LE.200) PULSE=1.0

cc IF(NDT.GT.200.AND.NDT.LE.400) PULSE=10.0/4.3
ccC IF (NDT.GT.400.AND.NDT.LE.2200) PULSE=1.0

cC IF (NDT.GT.2200.AND.NDT.LE.2400) PULSE=10.0/4.
cc IF (NDT.GT.2400.AND.NDT.LE.4200) PULSE=1.0

cc IF (NDT.GT.4200.AND.NDT.LE.4400) PULSE=10.0/4.
cc IF (NDT.GT.4400.AND.NDT.LE.6200) PULSE=1.0

cC IF (NDT.GT.6200.AND.NDT.LE.6400) PULSE=10.0/4.
cc IF(NDT.GT.6400.AND.NDT.LE.8200) PULSE=1.0

cc IF (NDT.GT.8200.AND.NDT.LE.8400) PULSE=10.0/4.
cc IF (NDT.GT.8400.AND.NDT.LE.10200) PULSE=1.0

IF (NTESTU.EQ.0) DHYDRO=0.014

IF (NTESTU.EQ.1) DHYDRO=(0.0082

IF (NTESTU.EQ.6) DHYDRO=0.0075

DVAPOR= (DWICK**2 L 0-NTESTU*DTES**2.0)**0.5

IF (NDT.LE.20) EPSV=0.01
IF (NDT.GT.20) EPSV=0.01

F=0.01
F1=3.0-2.0*F

C DDTV1=1.0
C DTV1=(TV (1) -TVOLD (1)) +DDTV1
DTV1=3.0

DO 10 K=1,N2
TVOLD (K) =TV (K}
10 CONTINUE

IF ((NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN
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40 FORMAT (3X, ‘'THIS OUTPUT IS FOR

WRITE(6,40)DT,F

ENDIF

TIME=NDT*DT

C LIQUID PROPERTIES

20

VISLIQ=0.0011~1.45E-6*TV(1)+5.32E-10%TV (1) **2.0

TENLIQ=0.22-9.1E-5*TV (1)
LAMBDA=4636437.0-180.8*TV (1)

PCMAX=2 . 0*TENLIQ/RC
DO 20 K=1,N2Z

QV0 (K) =QV (K) +QVTES (K)
TVO (K) =TV (K)
CONTINUE

DO 25 K=1,N2

IF (K.LE.NEVAP) DQDABAR (K)=(SUMQVI/NEVAP)/(2.0%3.1416*RW*D2
$ +NTESTU*2,0%3.1416*RTES*D2)

IF (K.GT.NEVAP.AND.K.LE.NADIA) DQDABAR(K)=0.0

IF {(K.GT.NADIA) DQDABAR (K)=-(SUMQVI/(NZ~NADIA))/(2.0*3.1416*RW*DZ
$ +NTESTU*2.0*3.1416*RTES*D2Z)

25 CONTINUE

C

CEaEaEaa s aaEEEaEEEaEEEaEaEEELE5EEE86586LEEEEEEEEEEELEEEEEEELLEE
&5&&5&6& COMPUTATION FOR THE FIRST ONE~THIRD TIME STEP &&66&&6&&

C

NADI=123
QHP=0.0

DO 180 J=1,NTHEP1
NGORD= (J-1) /NTHEPG+1
JING=J~ (NGORD-1) *NTHEPG
DO 160 I=1,NR

DO 100 K=1,N2

IF(NDT.EQ.1) QV(K)=0.0
IF (K.LE.KBURN) THEN
CKL=0.0000001
ELSE

CKL=75.7
ENDIF

IF(K.LE.NEVAP) QWALL(J,K)=PULSE*QEVAP
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CcC

$

IF (K.LE.NEVAP) QWALL (J,K)=HTCF* (TF-TW(J,K))
IF(K.GT.NEVAP.AND.K,LE.NADIA) QWALL(J,K)=0.0
IF (K.GT.NADIA) QWALL (J,K)=EMISS*SIGMA* (TAMB**4 . 0-TW(J,K)**4,0)

IF (I.LE.NRS) THEN

R=RO-(I-0.5) *DRS

DR=DRS

CKP=CKSS

CKN=CKSS

CKS=CKSS

CKE=CKSS

CKW=CKSS

CKF=CKSS

CKB=CKSS

DENP=DENS

CP=CS
IF(I.EQ.NRS.AND.JING.GE.JING2.AND.JING.LE.JING3) CKS=

CKSS*CKL* (DRS+DRW) / (CKSS*DRW+CKL*DRS)

ENDIF

IF(I.EQ.1) THEN
R1M=R

DR1=DR
CK1M=CKN

ENDIF

IF(I.GT.NRS) THEN
R=RI-(I-NRS-0.5) *DRW
DR=DRW
IF (JING.LT.JING2.0R.JING.GT.JING3) THEN
CKP=CKSS
CKN=CKSS
CKS=CKSS
CKE=CKSS
CKW=CKSS
CKF=CKSS
CKB=CKSS
DENP=DENS
CP=CS
IF (JING.EQ. (JING2~1)) CKF=2.0*CKSS*CKL/ (CKSS+CKL)
IF (JING.EQ. (JING3+1)) CKB=2.0*CKSS*CKL/ (CKSS+CKL)
ENDIF

IF (JING.GE.JING2.AND.JING.LE.JING3) THEN
CKP=CKL
CKN=CKL
CKS=CKL
CKE=CKL
CKW=CKL
CKF=CKL
CKB=CKL
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$

DENP=DENL
CP=CL
IF(I.EQ. (NRS+1)) CKN=CKSS*CKL* (DRS+DRW)/ (CKSS*DRW+CKL*DRS)
IF (JING.EQ.JING2) CKB=2.0*CKSS*CKL/ (CKSS+CKL)
IF (JING.EQ.JING3) CKF=2.0*CKSS*CKL/ (CKSS+CKL)
ENDIF
ENDIF

VOLP=( (R+DR/2)**2 ,0-(R-DR/2) **2.0) * (DTHETA/2) *D2
QHP=QHP+DENP*VOLP*CP* (T (I, J, K) -TSTART) *NGROV

IF(I.EQ.NR.AND.JING.NE.JING2.AND.JING.NE.JING3.AND.

DQDABAR(K) .GT.0.0) CKS=0.0
C=~CKW*F1
A=3 ,0*DENP*CP*DZ**2,0/DT+ (CKW+CKE) *F1
B=-CKE*F1

D2=(DZ**2, 0*CKN* (R+DR/2.0) /R/DR**2.0) *F
D3=(DZ2**2,0*CKS* (R-DR/2.0) /R/DR**2 Q) *F
D4=(D2**2.0*CKB/ (R*DTHETA) **2.0) *F
D5=(D2**2 0*CKF/ (R*DTHETA) **2.0) *F

IF(J.EQ.1) D4=0.0
IF(J.EQ.NTHETA) D5=0.0

D1l=3.0*DENP*CP*DZ**2.(/DT-D2-D3-D4-D5

IF(I.EQ.1.0R.I.EQ.NR.OR.J.EQ.1.0R.J.EQ.NTHEP1) THEN

D7=(2.0*D2**2_ 0*CKS* (R-DR/4.0) /R/DR**2_0) *F

IF(I.EQ.1.0R.I.EQ.NR) THEN
IF(J.EQ.1.0R.J.EQ.NTHEP1l) THEN
IF(I.EQ.1.AND.J.EQ.1) D=(D1+D2)*T(1,J,K)+D3*T(I+1,J,K)
+DS*T (I, J+1,K)
+ (QWALL (J, K) *RO*DZ**2.0/R/DR) *F

IF(I.EQ.1.AND.J.EQ.NTHEP1l) D=(D1+D2)*T(I,J,K)+D3*T(I+1,J,K)

+D4*T(I,J-1,K)
+ (QWALL (J, K) *RO*DZ**2, 0 /R/DR) *F
IF(I.EQ.NR.AND.J.EQ.1) D=(D1+4D3)*T(I,J,K)+D2*T(I~-1,J,K)
+D7*TVOLD (K) +D5*T(I,J+1,K)-D7*TOLD(I,J,K)
IF(I.EQ.NR.AND.J.EQ.NTHEP1l) D=(D1+D3)*T(I1,J,K)

+D2*T(I-1,J,K)+D7*TVOLD (K) +D4*T (I,J-1,K) ~-D7*TOLD (I, J,K)
ELSE
IF(I.EQ.1) D=(D1+D2)*T(I,J,K)+D3*T(I+1,J,K)+D4*T(1,J-1,K)
+D5*T (I,J+1,K) + (QWALL (J, K) *RO*D2**2, 0 /R/DR) *F
IF(I.EQ.NR) D=(D14D3)*T(I,J,K)+D2*T(1-1,J,K)
+D7*TVOLD (K) +P4*T (I, J-1,K)+D5*T(I,J+1,K) -D7*TOLD (I, J, K)
ENDIF
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ELSE
IF(J.EQ.1) D=D1*T(I,J,K)+D2*T(1-1,J,K)+D3*T(I+1,J,K)
$ +DS*T(I,J+1,K)
IF(J.EQ.NTHEP1) D=D1*T(I,J,K)+D2*T(I-1,J,K)+D3*T(I+1,J,K)
$ +D4*T (I, J~1,K)
ENDIF
ELSE

D=D1*T(I,J,K)+D2*T(I~-1,J,K)+D3*T(I+1,J,K)+D4*T(I,J-1,K)
$ +D5S*T(I,J+1,K)
ENDIF
IF(D1.LT.0.0) WRITE(6,128)I,J,K
128 FORMAT(1X, 'Dl=(-) IN ROOP3 I,J,K=',3(2X,I3))
IF(D1.LT.0.0) GO TO 1000
IF (K.EQ.1) THEN
C=0.0
A=A-CKW*F1l
B=B
D=D
ENDIF
IF(K.EQ.NZ) THEN
C=C
A=pA-CKE*F1
B=0.0
D=D
ENDIF

"TDMA ALGORITHM

P (K)=~B/ (A+C*P (K-1) )
Q(K) = (D-C*Q (K-1)) / (A+C*P (K~1))

IF(I1.EQ.NR) CKNR(J,K)=CKS
IF (K.LE.KBURN) CKNR(J,K)=0.0

IF(NDT.EQ.1.AND.I.EQ.NR) THEN

QVIN=CKNR (J, K) * (DTHETA* (RW+DRW/4.0) *DZ) *NGROV
$ * (T (NR, J,K) -TVOLD (K) ) / (DRW/2.0)

QV (K) =QV (K) +QVIN

DQVDA (K) =QV (K) / (2.0*3.1416*RW*D2)

ENDIF

100 CONTINUE

DO 170 Kl=1,N2Z
K=NZ+1-K1
TT(I,J,K)=P(K)*TT(1,J,K+1)+Q(K)
170 CONTINUE
160 CONTINUE
180 CONTINUE
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IF(NDT.EQ.1) GO TO 182

AEVAP=NEVAP*DZ* (2.0*3.1416*RO)
ACOND= (NZ-NADIA) *DZ* (2.0*3.1416*R0O)
TCAVG=0.0

DO 110 K=NADIA+1l,N2Z
DO 115 J=1,NTHETA
TCAVG=TCAVG+TW (J,K) / (NTHETA* (N2~NADIA))
115 CONTINUE
110 CONTINUE

QWTES=0.0

DO 187 K=1,N2

QWTES=QWTES+QVTES (K)
187 CONTINUE

XXX=AEVAP*QEVAP*PULSE
QETTL=QETTL+AEVAP*QEVAP*PULSE*DT
QCTTL=QCTTL+ACOND*EMISS*SIGMA* (TCAVG**4.(0-TAMB**4,0) *DT
QTES=QTES-QWTES*DT

182 DO 193 K=1,N2Z
DO 194 J=1,NTHEP1
DO 195 I=1,NR
T(I,J,K)=TT({I,J,K)

195 CONTINUE

194 CONTINUE

193 CONTINUE

C

c LEGAE LG EEELEEEEEELELEEEEEEEELEEELEEEEEEEEELEEEEEEELELEEEEEEEGE
Cc &&&&55665 COMPUTATION FOR THE SECOND ONE-THIRD TIME STEP &&&&&6&6&

NADI=123
DO 280 I=1,NR

DO 260 K=1,N2
DO 200 J=1,NTHEP1

NGORD= (J~1) /NTHEPG+1
JING=J~ (NGORD-1) *NTHEPG

IF (K.LE.KBURN) THEN
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CKL=0.0000001
ELSE

CKL=75.7
ENDIF

IF(I.LE.NRS) THEN
R=RO- (I-0.5) *DRS
DR=DRS
CKP=CKSS
CKN=CKSS
CKS=CKSS
CKE=CKSS
CKW=CKSS
CKF=CKSS
CKB=CKSS
DENP=DENS
CP=CS
IF(I.EQ.NRS.AND.JING.GE,JING2.AND.JING.LE.JING3) CKS=

$ CKSS*CKL* (DRS+DRW) / (CKSS*DRW+CKL*DRS)
ENDIF

IF(I.GT.NRS) THEN
R=RI- (I-NRS-0.5) *DRW
DR=DRW
IF(JING.LT.JING2.0R.JING.GT.JING3) THEN
CKP=CKSS
CKN=CKSS
CKS=CKSS
CKE=CKSS
CKW=CKSS
CKF=CKSS
CKB=CKSS
DENP=DENS
CP=CS
IF (JING.EQ. (JING2-1)) CKF=2.0*CKSS*CKL/ (CKSS+CKL)
IF (JING.EQ. (JING3+1)) CKB=2 0*CKSS*CKL/ (CKSS+CKL)
ENDIF

IF (JING.GE.JING2.AND.JING.LE.JING3) THEN
CKP=CKL

CKN=CKL

CKS=CKL

CKE=CKL

CKW=CKL

CKF=CKL

CKB=CKL

DENP=DENL

CP=CL

IF(I.EQ. (NRS+1)) CKN=CKSS*CKL* (DRS+DRW)/ (CKSS*DRW+CKL*DRS)
IF(JING.EQ.JING2) CKB=2.0*CKSS*CKL/ (CKSS+CKL)
IF (JING.EQ.JING3) CKF=2.0*CKSS*CKL/ (CKSS+CKL)

148




ENDIF
ENDIF

IF(I.EQ.NR.AND JING.NE.JING2.AND.JING.NE.JING3.AND.
$ DODABAR(K) .GT.0.0) CKS=0.0

C=~CKB*F1
A=3,0*DENP*CP* (R*DTHETA) **2. 0/DT+ (CKB+CKF) *F1
B=-~CKF*F1

D2= (R*DTHETA**2_,  0*CKN* (R+DR/2.0) /DR**2,0) *F
D3= (R*DTHETA**2, 0*CKS* (R-DR/2.0) /DR**2 Q) *F
D4=( (R*DTHETA) **2.0*CKW/D2**2.0) *F

DS=( (R*DTHETA) **2.0*CKE/D2**2.0) *F

IF(K.EQ.1) D4=0.0

IF(K.EQ.NZ) D5=0.0
D1=3,0*DENP*CP* (R*DTHETA) **2,0/DT-D2-D3-D4-D5

IF(I.EQ.1.0R.I.EQ.NR.OR.K.EQ.1.0R.K.EQ.N2) THEN
D7=(2.0*R*DTHETA**2. 0*CKS* (R-DR/4.0) /DR**2_ () *F
IF(I.EQ.1.0R.I.EQ.NR) THEN

IF(K.EQ.1.0R.K.EQ.NZ) THEN
IF(I.EQ.1.AND.K.EQ.1) D=(D1+4D2)*T(I,J,K)+D3*T(I+1,J,K)

$ +D5*T (I,J,K+1)+ (QWALL (J, K) *RO*R*DTHETA**2 . 0/DR) *F
IF(I.EQ.1.AND.K.EQ.NZ) D=(D1+D2)*T(I,J,K)+D3*T(I+1,J,K)
$ +D4*T(I,J,K-1)+(QWALL (J, K) *RO*R*DTHETA**2 . 0/DR) *F
IF(I.EQ.NR.AND.K.EQ.1) D=(D1+D3-D7)*T(I,J,K)+D2*T(I-1,J,K)
$ +D7*TVOLD (K) +DS*T (I, J,K+1)
IF(I.EQ.NR.AND.K.EQ.N2) D=(D1+D3-D7)*T(I,J,K)+D2*T(I-1,J,K)
$ +D7*TVOLD (K) +D4*T (I, J,K-1)
ELSE
IF(I.EQ.1) D=(D1+4D2)*T(I,J,K)+D3*T(I+1,J,K)+D4*T(I,J,K-1)
$ +D5*T(1,J,K+1) + (QWALL (J, K) *RO*R*DTHETA**2, 0/DR) *F
IF(I.EQ.NR) D=(D1+D3-D7)*T(I,J,K)+D2*T(I-1,J,K)
$ +D7*TVOLD (K) +D4*T(I,J,K-1)+D5*T(I,J,K+1)
ENDIF
ELSE
IF(K.EQ.1) D=D1*T(I,J,K)+D2*T(I-1,J,K)+D3*T{(I+1,J,K)
$ +D5*T(I,J,K+1)
IF(K.EQ.NZ) D=D1*T(I,J,K)+D2*T(I-1,J,K)+D3*T(I+1,J,K)
$ +D4*T(I,J,K-1)
ENDIF
ELSE

D=D1*T(I,J,K)+D2*T(I-1,J,K)+D3*T(I+1,J,K)+D4*T(I,J,K-1)
$ +D5*T(I,J,K+1)
ENDIF
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224 IF(D1.LT.0.0) WRITE(6,228)1,J,K

228 FORMAT(1X, 'Dl=(-) IN ROOP2 I, J,K=',3(2X,I3))
IF(D1.LT.0.0) GO TO 1000
IF(J.EQ.1) THEN

A=A-CKB*F1
B=B
D=D
ENDIF
IF(J.EQ.NTHEPl1) THEN
Cc=C
A=A-CKF*F1
D=D
ENDIF
c .
CTDMA ALGORITHM
C
IF(J.EQ.1l) THEN
P(J)=-B/A
Q(J)=D/A
ELSE

P (J)=-B/ (A+C*P (J-1))
Q(J)=(D-C*Q(J-1))/ (A+C*P (J~1))
ENDIF
200 CONTINUE
DO 270 Jl=1,NTHEP1
J=NTHEP1+1-J1
IF (J.EQ.NTHEP1) TT(I,J,K)=Q(J)
IF (J.NE.NTHEP1) TT(I,J,K)=P (J)*TT(I,J+1,K)+Q(J)
270 CONTINUE
260 CONTINUE
280 CONTINUE
DO 293 K=1,N32
DO 294 J=1,NTHEP1
DO 295 I=1,NR
T(I,J,K)=TT(I,J, K)
295 CONTINUE
294 CONTINUE
293 CONTINUE

IF(IPCM.EQ.2) THEN
CALL TES
ENDIF

o]

CLSEELELELEEEEELLLEELLEEEEEEEEEEEEEEEEEEEEEEELLEELLEELLLEEEEEELE

C §646564&6& COMPUTATION FOR THE THIRD ONE-THIRD TIME STEP &&&&&&&6&
NADI= 4

NQV0=0
350 DO 405 K=1,N2Z
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cl

Cc
o

OO0

C1

Cl

405

448

QVOLD (K) =QV (K) +QVTES (K)
TVOLD (K) =TV (K)
CONTINUE

NQVO=NQVO0+1
IF (NQVO.GT. 1) GO TO 450

DO 448 K=1,N2
IF (NQVO.GT.1l) DQVDA (K)=DQVDA (K) +FRELAX* (DQVDAN (K) -DQVDA (K) )
IF(NQVO.GT.1) DQDATE (K)~DQDATE (K) +FRELAX* (DQDATN (K) -DQDATE (K) )

‘CONTINUE

GUESS TV (KBURN+1) FOR THE NEXT TIME STEP

400

TVEE1=0.0
TVEE2=0.0
NCALLV=0
NCALLV=NCALLV+1l

IF (NCALLV.GT. 200) THEN
WRITE (6, *) '"NCALLV > 200
GO TO 1000

ENDIF

IF (NCALLV.EQ.1) TV (KBURN+1)=TV0 (KBURN+1)+DTV1
IF (NCALLV.EQ.2) TV (KBURN+1)=TV0 (KBURN+1)-DTV1
IF (NCALLV.GT.2) THEN

IF ((TVEE1*TVEE2) .EQ.0.0) THEN

WRITE(6,*) 'TVEE1*TVEE2~0.0"

GO TO 1000

ELSE

TV (KBURN+1) = (TVEE1+TVEE2) /2.0

ENDIF
ENDIF

IF ( (NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN
WRITE(6,*) ‘'NCALLV=',KNCALLV, 'TV0=', TV (KBURN+1)
ENDIF

CALL BOWMAN
CALL CHI

DO 415 N= 1,N2Z
TV (N) =TV (KBURN+1)
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415

$

TV (N) =TVREAL (N)
CONTINUE

DO 380 K=1,N2

DO 360 J=1,NTHEP1
NGORD=(J-1) /NTHEPG+1
JING=J~ (NGORD-1) *NTHEPG
DO 300 I=1,NR

IF (K.LE.KBURN) THEN
CKL=0.0000001

ELSE

CKL=75.7

ENDIF

IF(I.LE.NRS) THEN

R=RO~ (I-0.5) *DRS

DR=DRS

CKpP=CKSS

CKN=CKSS

CKS=CKSS

CKE=CKSS

CKW=CKSS

CKF=CKSS

CKB=CKSS

DENP=DENS

CP=CS
IF(I.EQ.NRS.AND.JING.GE.JING2.AND.JING.LE.JING3) CKS=

CKSS*CKL* (DRS+DRW) / (CKSS*DRW+CKL*DRS)

ENDIF

IF(I.GT.NRS) THEN
R=RI- (I-NRS-0.5) *DRW
DR=DRW
IF (JING.LT.JING2,0R.JING.GT.JING3) THEN
CKP=CKSS
CKN=CKSS
CKS=CKSS
CKE=CKSS
CKW=CKSS
CKF=CKSS
CKB=CKSS
DENP=DENS
CP=CS
IF(JING.EQ. (JING2-1)) CKF=2.0*CKSS*CKL/ (CKSS+CKL)
IF (JING.EQ. (JING3+1)) CKB=2.0*CKSS*CKL/ (CKSS+CKL)
ENDIF
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IF (JING.GE.JING2.AND.JING.LE.JING3) THEN
CKP=CKL 4
CKN=CKL
CKS=CKL
CKE=CKL
CKW=CKL
CKF=CKL
CKB=CKL
DENP=DENL
Cp=CL
IF(I.EQ. (NRS+1)) CKN=CKSS*CKL* (DRS+DRW) / (CKSS*DRW+CKL*DRS)
IF (JING.EQ.JING2) CKB=2.0*CKSS*CKL/ (CKSS+CKL)
IF(JING.EQ.JING3) CKF=2.0*CKSS*CKL/ (CKSS+CKL)
ENDIF
ENDIF

IF(I.EQ.NR.AND.JING.NE.JING2.AND.JING.NE,JING3.AND.
$ DQDABAR(K) .GT.0.0) CKS=0.0

C=-CKN* (R+0.5*DR) *F1
A=3.0*DENP*CP*R*DR**2.0/DT+ (CKN* (R+0.5*DR)
$+CKS* (R~0.5*DR)) *F1

B=-CKS* (R-0.5*DR) *F1
D2=(DR**2,0*CKB/R/DTHETA**2.0) *F
D3=(DR**2,0*CKF/R/DTHETA**2.0) *F

D4= (R*DR**2 . 0*CKW/DZ**2.0) *F
D5=(R*DR**2 . 0*CKE/DZ**2,0) *F

IF(J.EQ.1) D2=0.0
IF(J.EQ.NTHETA) D3=0.0
IF(K.EQ.1) D4=0.0
IF(K.EQ.N2) D5=0.0

D1=3.0*DENP*CP*R*DR**2.0/DT-D2-D3-D4-DS
IF(J.EQ.1.0R.J.EQ.NTHEP1.0OR.K.EQ.1.0R.K.EQ.N2Z) THEN
IF(J.EQ.1.0R.J.EQ.NTHEP1) THEN
IF(K.EQ.1.0R.K.EQ.N2) THEN
IF(J.EQ.1.AND.K.EQ.1) D=D1*T(I,J,K)

$ +D3*T(I,J+1,K)+DS*T(I,J, K+1)
IF(J.EQ.1.AND.K.EQ.N2Z) D=D1*T(I,J,K)
s +D3*T(I,J+1,K)+D4*T(I,J,K-1)
IF (J.EQ.NTHEP1.AND.K.EQ.1) D=D1*T(I,J,K)+D2*T(I,J-1,K)
$ +DS*T (I, J,K+1)
IF (J.EQ.NTHEP1.AND.K.EQ.N2) D=D1*T(I,J,K)+D2*T(I,J-1,K)
s +D4*T(I,J,K-1)
ELSE
IF(J.EQ.1) D=D1*T(I,J,K) +D3*T(I,J+1,K)
s +D4*T(I,J,K-1)+D5*T (I, J, K+1)

IF(J.EQ.NTHEP1) D=D1*T(I,J,K)+D2*T(I,J~1,K)
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$ +D4*T(I,J,K-1)+DS*T(I,J,K+1)

ENDIF
ELSE
IF(K.EQ.1) D=D1*T(I,J,K)+D2*T(I,J~1,K)+D3*T(I,J+1,K)
$ +D5*T(I,J,K+1)
IF(K.EQ.N2) D=D1*T(I,J,K)+D2*T(I,J-1,K)+D3*T(I1,J+1,K)
$ +D4*T(I,J,K-1)
ENDIF
ELSE

D=D1*T(I,J,K)+D2*T(I,J-1,K)+D3*T(I,J+1,K)+D4*T(I,J,K~-1)
$ +DS*T(I,J,K+1)
ENDIF

IF(D1.LT.0.0) WRITE(6,328)I,J,K 4
328 FORMAT (1X, 'D1=(-) IN ROOP1l I,J,K=',3(2X,13))
IF(D1.LT.0.0) GO TO 1000

IF(I.EQ.1) THEN
C=0.0
A=A-CKN* (R+DR/2.0) *F1
B=B
D=D+ (QWALL (J, K) *RO*DR) *F1
ENDIF
IF(I.EQ.NR) THEN
C=C
A=A+CKS*R*F1
B=0.0
D=D+2.0*CKS* (R-DR/4.0) *TV (K) *F1
ENDIF
c
C TDMA ALGORITHM
c
P(1)=-B/ (A+C*P(I-1))
Q(I)=(D-C*Q(I-1))/ (A+C*P(I-1))

300 CONTINUE

DO 370 Il=1,NR
I=aNR+1-I1
TT(I,J,K)=P(I)*TT(I+1,J,K)+Q(I)
370 CONTINUE
360 CONTINUE
380 CONTINUE

IF (IPCM.EQ.2) THEN
CALL TES
ENDIF
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C SEARCHING FOR TV (KBURN+l1) FOR NEXT TIME STEP

C
QIN=0.0
SUMQVI=0.0
SUMQVO=0.0
C
DO 410 K=1,N2
QV(K)=0.0
DO 420 J=1,NTHETA
NGORD= (J-1) /NTHEPG+1
JING=J- (NGORD-1) *NTHERG
DO 430 I=1,NR
IF(I.EQ.NR) QVIN=CKNR(J,K)* (DTHETA* (RW+DRW/4.0) *DZ) *NGROV
S * (TT (NR,J,K) -TV(K))/(DRW/2.0)
430 CONTINUE
QV (K) =QV (K) +QVIN
420 CONTINUE
IF(QV(K) .GT.0.0) QIN=QIN+QV (K)
IF ((QV(K)+QVTES (K)) .GT.0.0) SUMQVI=SUMQVI+ (QV (K)+QVTES (K))
IF ((QV(K)+QVTES (K) ) .LE.0.0) SUMQVO=SUMQVO- (QV (K) +QVTES (K) )
410 CONTINUE
C
SUMQV=SUMQVI-SUMQVO
IF ((NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN
C WRITE (6, *) 'SUMQV=', SUMQV, 'QVI=', SUMQVI, 'QVO="', SUMQVO
ENDIF
IF ( (ABS (SUMQV) /ABS (SUMQVI+SUMQVO)) .GT.EPSV) THEN
IF (SUMQV.LE.0.0) TVEEl=TV(KBURN+1)
IF (SUMQV.GT.0.0) TVEEZ2=TV (KBURN+1)
GO TO 400
ELSE
GO TO 440
ENDIF
Cc
C
440 IF((NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN
C WRITE (6, *) 'NCALLV=', NCALLV
ENDIF

Cl CALL BOWMAN
C1 CALL CHI

PVMIN=PV (KBURN+1)
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DO 465 N=KBURN+2,NZ
IF(PV(N) .LT.PVMIN) THEN
PVMIN=PV (N)
KPVMIN=N
ENDIF
465 CONTINUE

CALL LIQUID

IF ((NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN

WRITE (6, *)' Z PV PL DPV DPL'
DO 460 N=KBURN+1,6N2Z

2=(2ZL/N2Z) * (N-0.5)

DPV (N) =PV (N) -PV (1)

DPL(N)=PL (N) -PL (1)

WRITE(6,462) Z,PV(N),PL(N),DPV(N),DPL(N)
462 FORMAT (2X,F8.4,4 (2X,F8.1))
460 CONTINUE

ENDIF

DPVMAX=PV (KBURN+1) -PVMIN

DPLMAX=PL (NADIA+1) -PL (KBURN+1)

PCMAX=2 ., 0*TENLIQ/RC
C IF ({(NDT/NWRITE) .EQ. (NDT/XWRITE)) WRITE (6, *) 'DPVMAX="', DPVMAX
C $ s 'DPLMAX="', DPLMAX, 'PCMAX="',6 PCMAX

DO 442 K=1,NZ
QVNEW (K) =QV (K) +QVTES (K)
TVNEW (K) =TV (K)
DQVDAN (K) =QV (K) / (2.0*3,1416*RW*D2Z)
IF(IPCM.EQ.1) GO TO 442
DQDATN (K) =QVTES (K) / (NTESTU*2.0*3,1416*RTES*D2)
442 CONTINUE

IF (METHOD.EQ.1) GO TO 450

< DO 445 K=1,N2

C WRITE (6, 906) K, QV (K) , QVTES (K) , QV (K) +QVTES (K)

C IF(K.GT.1.AND. ( (QV(K)+QVTES (K)) * (QV(K-1) +QVTES (K-1))) .LT.0.0)
C SPLM=K*D2Z

C445 CONTINUE

o IF ( (NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN

c1 WRITE (6, *) 'PLM="',PLM
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c1 WRITE(6,*)' °

c1 WRITE(6,*)'

C1 WRITE (6,*) "NQVO=',6NQVO

c1 WRITE (6, *) 'QV0=",QV0 (1), *QVOOLD=",QVOLD (1), 'QVONEW="', QVNEW (1)
c1 WRITE(6,*) 'TVO=',TVO(1), *TVOOLD=', TVOLD (1), 'TVONEW="', TVNEW (1)
C1 WRITE(6,*)"*'

Cc1 WRITE(6,*)' !

o) ENDIF

Cl IF (ABS( (TVNEW (1) -TVOLD (1)) /(TVNEW(1)-TV0(1))) .LE.EPSQVK) THEN
Cl WRITE(6,*)" !

1 WRITE (6, *) 'TV0 CONVERGE NOW!'
Cl WRITE(6,*)" !
c1 ENDIF

NWOO=0

DO 452 K=1,NZ
IF (ABS ( (TVNEW (K) -TVOLD (K) ) / (TVNEW (K) -TVO0 (K) ) ) .GT.EPSQVK)
$ NWOO=NWOO+1

IF(NWOO.GE.30) GO TO 350

452 CONTINUE

450 DO 455 K=1,NZ
DQVDA (K) =DQVDAN (K)
DQDATE (K) =DQDATN (K)

455 CONTINUE

NADI=6

IF (IPCM.EQ.2) 7THEN
CALL TES
ENDIF

THPTTL=0.0
TVTTL=0.0
DO 393 K=1,N2Z
DO 394 J=1,NTHEP1
NGORD= (J~1) /NTHEPG+1
JING=J~ (NGORD-1) *NTHEPG
DO 395 I=1,NR
IF(I.GT.NRS.AND.JING.GE.JING2.AND.JING.LE.JING3.AND.K.LE.KBURN)
$ THEN
T(I,J,K)=TV(K)
ELSE
T(I,J,K)=TT(I,J,K)
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ENDIF
TOLD(I,J,K)=T(I,J,K)
THPTTL=THPTTL+T (I, J, K)
395 CONTINUE
TW(J,K)=T(1,J,K)+(DR1/2.0) *QWALL (J, K) *RO/CK1M/ (R1M+DR1/4.0)
394 CONTINUE
TVTTL=TVTTL+TV (K)
DTV (K) =TV (K) ~TVOLD (K)
393 CONTINUE

THPAVG (NDT) =THPTTL/NZ/NTHEP1/NR
TVAVG (NDT) =TVTTL/N2
CTIME (NDT)=TIME

IF ((NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN

WRITE (6, 910)
910 FORMAT(1X,//////)
WRITE (6,920) TIME
927 FORMAT (28X, 'TIME=',2X,F7.2,2X, 'SECONDS', /)

WRITE(6,*)" '
WRITE (6,*) ' '
WRITE(6,*) ' '

WRITE(6,940) (TW(2,K),K=1,N2, 4)
940 FORMAT (1X,' WALL',10(1X,F6.1))

DO 900 I=1,NR
WRITE (6,950)I, (T(I,2,K),K=1,N2, 4)
950 FORMAT(1X,'I=',I3,10(1X,F6.1))
900 CONTINUE
WRITE (6,960) (TV(K),K=1,N2, 4)
960 FORMAT (1X, 'VAPOR',10(1X,F6.1)///)
WRITE (6,970) THPAVG (NDT)
970 FORMAT (2X, 'AVERAGE HEAT PIPE TEMPERATURE=',2X,F9.4)
WRITE(6,980) TVAVG(NDT)
980 FORMAT (2X, 'AVERAGE VAPOR TEMPERATURE=',k2X,F9.4///)

ENDIF

IF ( (NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN

IF (IPCM.EQ.2) THEN

WRITE (6, *) "' TES TEMPERATURE '
WRITE(6,*) "' .
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DO 990 I=1,NRTES,2

WRITE(6,930) I, (TE(I,K),K=1,NZ, 4)
930 FORMAT (1X,'IE=',I13,10(1X,F6.1))
990 CONTINUE

ENDIF

ENDIF

IF ((NDT/NWRITE) .EQ. (NDT/XWRITE)) THEN
PCTQWTES= (QWTES/QIN) *100.0
WRITE (6, *) 'SUMQVI="',6 SUMQVI, ' SUMQVO="', SUMQVQO
WRITE(6,*) 'QIN=',6QIN, 'QWTES=',6QWTES, '$QWTES=',PCTQWTES, '%"
WRITE(6,*) 'QEVAP=', XXX
WRITE(6,*) "' '
WRITE (6,*) " !

C ENERGY BALENCE CHECK ‘
IF (NDT.GT.1.AND. ( (NDT/NWRITE) .EQ. (NDT/XWRITE))) THEN
ERROR1=(QETTL~ (QCTTL+QHP+QPCM) ) /QETTL*100.0
ERROR2= (QETTL~ (QCTTL+QHP+QTES) ) /QETTL*100.0
IF (IPCM.EQ.2) ERROR3=(QTES-QPCM) /QTES*100.0
IF (IPCM.EQ.2) PCTMELT=QMELT/QPCMTTL*100.0

WRITE (6,902) QETTL,QCTTL, QHP,QPCM, QTES
902  FORMAT (1X, 'QETTL=',F9.1,2X, '"QCTTL=',F9.1,2X, 'QHP="',FB8.1, 2X
S , 'QPCM="',F8.1,2X, '"QTES=",F8.1/)
WRITE (6,903) ERROR1, ERROR2, ERROR3, PCTMELT
903 FORMAT (1X, 'ENERGY BALENCE ERROR=',2X,F6.2,' %',62X,F6.2,' %'
$ 2X,F6.2," %',2X, 'SMELT=",F6.2,"*' %'///)
ENDIF

C DO 905 K=1,N2
C WRITE (6,906) K, QV (K) ,QVTES (K) , QV (K) +QVTES (K)
C 906 FORMAT (1X,1I3,3X,'Qv=',F10.5,5X, 'QVTES="',F10.5, 5X, 'QVNET="',F10.5)
C 905 CONTINUE
C WRITE (6, *) '"PLM=',PLM
C WRITE (6, *) 'NQV0="',NQV0, 'FRELAX="', FRELAX
DO 915 N=1,N2Z
WRITE(6,916) N, PV(N),DPV(N), TVREAL(N) ,DENV (N)
916 FORMAT(1X,'N=',I3,2X,'PV(N)=',1X,F8.1,2X, 'DPV(N)="',1X,F8.1,
$ 2X,'TV(N)=',1X,F7.2,2X, 'DENV(N)=',1X,F8.6)
915 CONTINUE
ENDIF
IF (NDT.EQ.NDTEND.OR.NQV0.GT.600) THEN
Cc DO 982 K=1,N2Z
C WRITE (6,983) K,DQVDA (K)

Cc983 FORMAT (3X, 'K=',13,2X, 'DQVDA="',F15.3)
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c

982 CONTINUE

GO TO 999
ENDIF

60 CONTINUE

999 IF(IPCM.EQ.1) WRITE(6,*)'C WITHOUT TES'
IF (IPCM.EQ.2) WRITE(6,*)'C WITH TES'
IF (METHOD.EQ.1) WRITE(6,*)'C EXPLICIT WITH VAPOR'
IF (METHOD.EQ.2) WRITE(6,*)'C IMPLICIT WITH VAPOR'

WRITE(6,*)'C', '"NTESTU=',NTESTU, 'RTES=',RTES, 'DT=',DT, 'F=',F
WRITE(6,*)'C TIME -THP~ -Tv-'
DO 995 NDT=NWRITE, NDTEND,NWRITE
WRITE (6, 996) CTIME (NDT) , THPAVG (NDT) , TVAVG (NDT)
996 FORMAT (1X,F7.2,2(2X,F8.2))
995 CONTINUE
1000 sToOP
END

L2 822222 222222228222 &

* SUBROUTINE BOWMAN *
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SUBROUTINE BOWMAN
ONE DIMENSIONAL COMPRESSIBLE VAPOR FLOWFOR HEAT PIPE

REAL *8 TV(100)

COMMON /HPIPE/ TV,DQDATE(100),PL,DZ,N2,NDT,QVTES (100),
SNTESTU, TIME, KBURN, NWRITE, XWRITE, NGROV, RW, NADIA, PV (100)
COMMON /VCORE/ DQDA (100),DQDABAR(100), IPCM, PVTTL(100)
$ ,TVREAL(100),PLM, DTES, DVAPOR, DWICK, DHYDRO, XMMAX,, KPLM

$ ,NEVAP,XTI,DENV(100)
IF (IPCM.EQ.1) THEN
DO 10 N=1,NZ
QVTES(N)=0.0
DQDATE (N) =0. 0
10 CONTINUE
ENDIF

GUESS THE VAPOR TEMPERATURE AT THE EVAPORATOR END TO
TO=TV (KBURN+1)
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OMEGA=0 .25
R=361.5

c WRITE (*, *) 'RCONST="',R
LAMBDA=4636437.26-180.817*T0
GAMMA=1.67
GAMM1=GAMMA / (GAMMA-1.0)

INITIALIZE THE VARIABLES AT THE UPSTREAM PIPE END

[e e Ne!

W=0.0

2=0.0

RHO=6.335E08*10.0** (-5567.0/T0) /TO**1.5
PO0=RHO*R*T0

USE INCOMPRESSIBLE MODEL TO GET THE STARTING VALUES

OO0

RHOV=-DQDABAR (KBURN+1) / LAMBDA
RHOVTE=RHOV

C2=GAMMA*P 0 /RHO

XM22=(4.0* (RHOV*DWICK+NTESTU*RHOVTE*DTES) *D2/RHO/DVAPOR**2.0) **2
$ /C2
W2=W~-RHOV*DZ*DWICK*3.1416-NTESTU*RHOVTE*DZ*DTES*3.1416
22=2+D2/2.0

P2=P0/ (1.0+ (GAMMA-1.0) /2. 0*XM22) **GAMM1

P02=P0

RHO2=RHO

TV (KBURN+1) =T0

TVREAL (KBURN+1) =T0

PV (KBURN+1)=P0

PVTTL (KBURN+1) =P0

DENV (KBURN+1) =RHO

MARCHING DOWN THE PIPE FINDING THE FLOW PROPERITIES ALONG THE WAY

[e e IK®]

2=22

C WRITE (6,*) " Z/PL P2/P0 T
C $ W2 XM22'°

s e NeNeNe]

XMMAX=0.0

DO 5 N=KBURN+2,N2Z
XM2=XM22

IF (XM2.GT.0.99) THEN
WRITE (6,70)Z,XM2

lel
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70 FORMAT(3X,'2=',F6.3,3X, 'XM2=',F6.3)
ENDIF

P=p2
PO01=p02
W=W2
2=2+D2

PREDICTOR AND CCRRECTOR STEPS
CALCULATE THE INFLUENCE COEFFICIENTS

XM2BAR= (XM2+XM22) /2.0
CON1=1.0+(GAMMA-1.0) /2. 0*XM2BAR
CON2=1.0~XM2BAR
CON3=1.0+GAMMA*XM2BAR
CON4=GAMMA*XM2BAR
FW=2,0*CON3*CON1/CON2

FWP=CON4

FIND THE MASS ADDED THROUGH THE PIPE WALL

RHOV=-DQDABAR (N) / LAMBDA
RHOVTE=RHOV

DELW=~-RHOV*DZ*DWICK*3,1416-NTESTU*RHOVTE*DZ*DTES*3.1416
W2=W+DELW

IF(W2.LE.0.0) THEN

XM22=0.0

pP02=p01

T=T0

GO TO 30

ENDIF

FIND THE FRICTION FACTOR AND THE FRICTION INFLUENCE COEFFICIENT

T=T0/CON1
RMU=6.083E-09*T+1.2606E-05
WBAR= (W+W2) /2.0

IF (WBAR.LE.0.0) THEN
XM22=0.0

P02=p01

T=T0

GO TO 30

ENDIF

REY=(4.0*WBAR*DHYDRO) / (3.1416*DVAPOR**2 . 0*RMU)

RER=-DELW/ (3.1416*RMU*DZ)
2ZBAR= ( (2-XTI) /OMEGA) **2
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IF ((NDT/NWRITE) .EQ. (NDT/XWRITE)) THEN
C WRITE (6,*) °'REY=',REY
ENDIF
IF(REY.GE.12000) WRITE(6,*) 'REY>12000"'

FL=16/REY* (1.2337-0.2337*EXP (-0.036*ABS (RER) ) ) *EXP (1.20*XM2)
C FL=24/REY

BETA=ABS (RER/REY)
FSTAR=0.046/REY**0.2

FT=FSTAR* (1+55*REY**0.1*EXP (1.2*XM2) *BETA**0.9* (PL/DHYDRO) **0.1)

IF(2.LE.XTI) F=FL
IF(2.GT.XTI) F=FT-(FT-FL)*EXP (-0.412*ZBAR)

FF=CON4*CON1/CON2*4.0*F/DHYDKO
FFP=CON4/2.0*4.0*F/DHYDRO

IF(W2.LE.0.0) WRITE(6,*) 'W2<0.0°
XM22=EXP (ALOG (XM2) +FF*DZ+FW*ALOG (W2 /W) )
IF (XMMAX.LT. (XM22**(.5)) XMMAX=XM22**0. 5
P02=EXP (ALOG (P01) ~-FFP*DZ~FWP*ALOG (W2/W) )
30 P2=P02/(1.0+(GAMMA~1.0)/2*XM22) **GAMM1

TX=T

DO 80 NX=1,100
T2=-5567.0/ALOG10 (P2*TX**(.5/2.29E11)
IF(ABS(T2-TX) .LT.1.0) GO TO 90
TX=T2
IF(NX.EQ.100) WRITE(6,*) 'NX=100'
80 CONTINUE

90 TVREAL(N)=T2
PV(N)=p2
PVTTL (N)=P02
DENV (N) =PV (N) / (R*TVREAL (N) )

cC WRITE(6,20)z/PL,P2/P0,T,W2,XM22
CC 20 FORMAT(1X,5(3X,F15.10))
S CONTINUE

DO 50 N=1,KBURN
TVREAL (N) =TVREAL (KBURN+1)
PV (N) =PV (KBURN+1)
PVTTL (N) =PVTTL (KBURN+1)
50 CONTINUE
40 RETURN
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* SUBROUTINE CHI *
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SUBROUTINE CHI

ONE DIMENSIONAL COMPRESSIBLE VAPOR FLOW FOR HEAT PIPE

REAL *8 TV{100),W(100)
REAL LAMBDA

COMMON /HPIPE/ TV,DQDATE(100),PL,DZ,NZ,NDT,QVTES(100),
SNTESTU, TIME, KBURN, NWRITE, XWRITE, NGROV, RW, NADIA, PV (100)
COMMON /VCORE/ DQDA (100),DQDABAR(100), IPCM,PVTTL(100)
$ ,TVREAL(100),PLM,DTES, DVAPOR, DWICK, DHYDRO, XMMAX, KPLM
$ ,NEVAP,XTI,DENV(100)

DIMENSION PP (100)

IF(IPCM.EQ.1) THEN
DO 10 N=1,NZ
QVTES(N)=0.0
DQDATE (N)=0.0
CONTINUE

ENDIF

AV=3.1416*DVAPOR**2.0/4.0

GUESS THE VAPOR TEMPERATURE AT THE EVAPORATOR END TO

TO0=TV (KBURN+1)
RHO=6.335E8*10.0** (-5567/T0) /T0**1.5
PO=RHO*R*TO0

R=361.5
LAMBDA=4636437.26~-180.817*T0

GAMMA=1 .67

GAMM1=GAMMA/ (GAMMA-1.0)
C2=GAMMA*P0/RHO

W (KBURN+1)=0.0
TVREAL (KBURN+1) =T0
PV (KBURN+1) =P0

PP (KBURN+1) =P0
DENV (KBURN+1) =RHO
XMMAX=0.0
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DO S N=KBURN+2,NZ+1

RMU=6.083E~9*TVREAL (N-1)+1.2606E-5
RHO=6.335E8%10.0** (-5567/TVREAL(N-1)) /TVREAL(N-1) **1.5

C
C FIND THE MASS ADDED THROUGH THE PIPE WALL
C

RHOV=-DQDABAR (N-1) /LAMBDA

RHOVTE=RHOV

DELW=-~RHOV*D2*DWICK*3.1416-NTESTU*RHOVTE*DZ*DTES*3.1416
W(N) =W (N-1)+DELW

IF(W(N).LE.0.0) THEN
PP (N) =PP (N-1)

PV (N) =PV (N-1)
TVREAL {N) =TVREAL (N-1)
GO TO 5

ENDIF

AM2=W (N) **2,0/ (AV*RHO) **2.0/C2
IF (XMMAX.LT. (XM2**0.5)) XMMAX=XM2 **(.5
REY=4.0*DHYDRO*W(N) / (3.1416*DVAPOR**2, 0*RMU)

IF ((NDT/NWRITE) .EQ. (NDT/XWRITE)) THEN
C WRITE(6,*) 'REY=',6REY
ENDIF

A=32.0*RMU/ (DHYDRO**2, 0*AV*RHO* LAMBDA)
B=0.076*RMU/ (DHYDRO**2. 0*AV*RHO* LAMBDA)
C=1.0+ (GAMMA-1) /2*XM2

IF(REY.LE.2300.0.AND.XM2.LE.0.04) FV=A
IF(REY.LE.2300.0.AND.XM2.GT.0.04) FV=A*C**(-0.5)
IF(REY.GT.2300.0.AND.XM2.LE.0.04) FV=B*REY**(.75
IF(REY.GT.2300.0.AND.XM2.GT.0.04) FV=B*REY**0_.75*C** (~-0.75)

IF(REY.LE.2300.0) BETA=1,33
IF(REY.GT.2300.0) BETA=1.0

PP (N) =PP (N-1) -FV*W (N) * LAMBDA*DZ
PV (N) =PP (N) -BETA*W (N) **2 0/ (AV**2  0*RHO)
PVTTL (N) =PV (N) * (1+ (GAMMA-1) /2*XM2) **GAMM1

IF (XM2.GT.0.99) THEN
WRITE (6, 70) N, XM2

70 FORMAT (3X, 'N=',6I4,3X, 'XM2="',F6.3)
ENDIF




30 TX=TVREAL(N-1)

DO 80 NX=1,100
T2=-5567.0/ALOG10 (PV (N) *TX**0.5/2.29E11)
IF (ABS(T2-TX).LT.1.0) GO TO 90
TX=T2
IF (NX.EQ.100) WRITE(6,*) 'NX=100'
80 CONTINUE

90 TVREAL(N)=T2
DENV (N) =PV (N) / (R*TVREAL (N) )

C
cc WRITE(6,20)2/PL,P2/P0,T,W.,XM22
CC 20 FORMAT (1X,5(3X,F15.10))
5 CONTINUE
c
DO 50 N=1,KBURN
TVREAL (N) =TVREAL (KBURN+1)
PV (N) =PV (KBURN+1)
PVTTL (N) =PVTTL (KBURN+1)
50 CONTINUE
RETURN
END
Cc
C
C
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C* SUBROUTINE TES *

Chrikhhkkdkkhkkkkhkkkx

SUBRCUTINE TES

o CKL -THERMAL CONDUCTIVITY OF LIQUID LIH (W/M-K)
C CKSS -THERMAL COMDUCTIVITY OF SOLID LIH (W/M-K)
Cc CKP -NODAL THERMAL CONDUCTIVITY (W/M-K)

C CL -HEAT CAPACITY OF LIQUID LIH (J/K-KG)

C Cs -HEAT CAPACITY OF SOLID LIH (J/K-¥")

c Ccp -NODAL HEAT CAPACITY (J/K-KG)

Cc DENL -DENSITY OF LIQUID LIH (KG/M3)

o DENS -DENSITY OF SOLID LIH (KG/M3)

Cc DENP -NODAL DENSITY (KG/M3)

C DR -SPACE INCREMENT IN RADIAL DIRECTION IN TES (M)
c DT -TIME STEP (SEC)

C DTHETA ~ANGULAR INCREMENT (RADIANS)

C DZ ~SPACE INCREMENT IN AXIAL DIRECTION (M)

o HF:'SE -FUSION HEAT OF LIH (J/KG)
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C RO -QUTSIDE RADIUS OF HEAT PIPE WALL (M)

c R -NODAL RADIUS (M)

c TMELT -~MELT TEMPERATURE Ot LIH (K)

C T(I,K) -NODAL TEMPERATURE (K)

C TV(K) -VAPOR TEMPERATURE (K)

C 3%%%

FEEIEEFEILELHLLPLBLILTIITIILILLBUTBITT92B3392392%%8%%%3%%%
REAL *8 T(40,100),TT(40,100),TOLD(40,100),TVOLD(100),TV (1
REAL *8 TSTAR(40,100),TP,TW,TE, TS, TN,DTV(100)

REAL *8 DH(40,100),FH(40,100),FT(40,100),CSTAR(40,100)

REAL *8 P(100),Q(100),CKTES1(100),F,F1,T1, T2

COMMON /HPIPE/ TV,DQDATE(100),2L,D2,NZ,NDT,QVTES (100),

$ NTESTU, TIME, KBURN, NWRITE, XWRITE, NGROV, RW,NADIA, PV (100)
COMMON /PCM/ TVOLD,T,TT,DTV,DT,NADI,NR,DTHETA, RO,
$ TSTART, NTHETA, QPCM, QMELT, QPCMTTL
F= 0.01
Fl1=2.0-F

IF (NADI.EQ.4) GO TO 400
IF (NADI.EQ.6) GO TO 600

C TES GEOMETRY
DR=RO/NR

C THERMAL CONDUCTIVITY, HEAT CAPACITY AND DENSITY FOR TES

CKL=2.1

CKSS=4.2

CKM=2.0* (CKSS*CKL) / (CKSS+CKL)
CL=7370.0

CS=6280.0

CM=(CL+CS) /2.0

DENL=550.0

DENS=DENL

DENM= (DENL+DENS) /2.0
CSTEEL=500.0

C MFLTING TEMPERATURE AND HEAT FUSION
TMELT=956.0
’ HFUSE=2580000.0
QPCMTTL=3.1416*RO**2.0*ZL*DENM*HFUSE*NTESTU

T1=951.0
T2=961.0
H1=CS*T1
H2=CS*TMELT+CL* (T2-TMELT) +HFUSE
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Cc TES STARTING TEMPERATURE

IF(NDT.EQ.1) THEN
DO 30 K=1,NZ
DO 36 I=1,NR
T(I,K)=TSTART
TOLD (I, K)=TSTART
36 CONTINUE
30 CONTINUE
ENDIF

DO S0 I=1,NR
DO 55 K=1,N2Z

R=RO-(I-0.5)*DR

C vty byt
TP=TOLD (I, K)

IF(I.EQ.1) TN=TP+2* (TVOLD (K)-TP)* (1-DR/ (4*RQO)
IF(I.EQ.NR) TS=TP
IF(K.EQ.1) TW=TP
IF(K.EQ.NZ) TE=TP

IF(I.NE.1) TN=TOLD(I-1,K)
IF(I.NE.NR) TS=TOLD(I+1,K)
IF(K.NE.1) TW=TOLD(I,K-1)
IF(K.NE.N2) TE=TOLD(I,K+1)

IF(TP.LE.TMELT) THEN
IF(TN.LE.TMELT) CKN=CKSS
IF(TS.LE.TMELT) CKS=CKSS
IF(TW.LE.TMELT) CKW=CKSS
IF(TE.LE.TMELT) CKE=CKSS

IF(TN.GT.TMELT) CKN=CKM

IF(TS.GT.TMELT) CKS=CKM

IF(TW.GT.TMELT) CKW=CKM

IF(TE.GT.TMELT) CKE=CKM
ENDIF

IF(TP.GT.TMELT) THEN
IF(TN.LE.TMELT) CKN=CKM
IF(TS.LE.TMELT) CKS=CKM
IF(TW.LE.TMELT) CKW=CKM
IF(TE.LE.TMELT) CKE=CKM

IF(TN.GT.TMELT) CKN=CKL
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IF(TS.GT.TMELT) CKS=CKL

IF (TW.GT.TMELT) CKW=CKL

IF(TE.GT.TMELT) CKE=CKL
ENDIF

DH(I,K)=(DT/ (DENM*R*DR**2,0) ) * (CKN* (R+DR/2) * (TN-TP)
$ +CKS* (R-DR/2) * (TS-TP) )
$ +(DT/ (DENM*DZ**2,0)) * (CKW* (TW-TP) +CKE* (TE-TP))

C MELTING
IF(DH(I,K).GE.0.0) THEN

IF(TP.LT.T1) FH(I,K)=CS*TP
IF(TP.GE.T1.AND.TP.LE.T2) FH(I,K)=(H2-H1)*(TP-T1)/(T2-T1)+H1
IF(TP.GT.T2) FH(I,K)=(TP-T2)*CL+H2

H=FH (I, K)+DH (I, K)

IF(H.LT.H1) TSTAR(I,K)=H/CS
IF(H.GE.H1.AND.H.LE.H2) TSTAR(I,K)=(H-Hl)*(T2-T1l)/(H2-H1)+T1
IF(H.GT.H2) TSTAR(I,K)=(H-H2) /CL+T2

IF(FH(I,K) .LT.H1.AND.H.LT.Hl) CSTAR(I,K)=CS

IF(FH(I,K) .GE.H1.AND.FH(I,K) .LE.H2.AND.H.GE.H1 .AND.H.LE.H2)

$ CSTAR(I,K)=(H2~H1)/ (T2-T1)

IF(FH(I,K).GT.H2.AND.H.GT.H2) CSTAR(I,K)=CL
IF((FH(I,K).LT.H1.AND.H.GT.H1) .OR. (FH(I,K) .LT.H2.AND.H.GT.H2))
S CSTAR(I,K)=DH(I,K)/(TSTAR(I,K)-TP)

ENDIF

C SOLIDIFICATION
IF(DH(I,K).LT.0.0) THEN

IF(TP.LT.T1) FH(I,K)=CS*TP

IF(TP.GE.T1.AND.TP.LE.T2) FH(I,K)={(H2-H1)*(TP-T2)/(T2-T1)+H2
IF(TP.GT.T2) FH(I,K)=(TP-T2)*CL+H2

H=FH (I, K)+DH (I, K)

IF(H.LT.Hl1) TSTAR(I,K)=H/CS
IF(H.GE.H1.AND.H.LE.H2) TSTAR(I,K)=(H-H2)*(T2-T1)/(H2-H1)+T2
IF(H.GT.H2) TSTAR(I,K)={(H-H2)/CL+T2
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IF(FH(I,K) .LT.H1.AND.H.LT.H1) CSTAR(I,K)=CS

IF(FH(I,K) .GE.H1.AND.FH(I,K).LE.H2.AND.H.GE.H1.AND.H.LE.H2)

$ CSTAR(I,K)=(H2-H1l)/(T2~T1)

IF(FH(I,K).GT.H2.AND.H.GT.H2) CSTAR(I,K)=CL
IF((FH(I,K).GT.H1.AND.H.LT.Hl) .0OR. (FH(I,K).GT.H2.AND.H.LT.H2))
$ CSTAR(1,K)=DH(I,K)/ (TSTAR(I,K)-TP)

ENDIF

55 CONTINUE
50 CONTINUE

C
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C &4&4&46& COMPUTATION FOR THE FIRST HALF TIME STEP &&&&&&&&&
QPCM=0.0
QMELT=0.0

DO 180 I=1,NR
DO 160 K=1,N2Z

R=RO-(I-0.5)*DR

CHrrrrrrernt
TP=TOLD (I, K)

IF(I
IF(I

IF (K.
IF (K.

IF(I
IF(I

IF (K.
IF (K.

.EQ.
.EQ.
EQ.
EQ.

.NE.
.NE.
NE.
NE.

1) TN=TP+2* (TVOLD (K) -TP) * (1-DR/ (4*R0O))
NR) TS=TP
1) TW=TP
NZ) TE=TP

1) TN=TOLD(I-1,K)
NR) TS=TOLD (I+1,K)
1) TW=TOLD(I,K-1)
NZ) TE=TOLD(I,K+1)

IF(TP.LE.TMELT) THEN
IF (TN,
IF(TS.
IF (TW.
IF (TE.

IF(TN.
IF(TS.
IF(TW.
IF(TE.
ENDIF

LE.TMELT) CKN=CKSS
LE.TMELT) CKS=CKSS
LE.TMELT) CKW=CKSS
LE.TMELT) CKE=CKSS

GT.TMELT) CKN=CKM
GT.TMELT) CKS=CKM
GT.TMELT) CKW=CKM
GT.TMELT) CKE=CKM

IF(TP.GT.TMELT) THEN
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IF (TN.LE.TMELT) CKN=CKM
IF(TS.LE.TMELT) CKS=CKM
IF(TW.LE.TMELT) CKW=CKM
IF(TE.LE.TMELT) CKE=CKM

IF (TN.GT.TMELT) CKN=CKL

IF(TS.GT.TMELT) CKS=CKL

IF(TW.GT.TMELT) CKW=CKL

IF(TE.GT.TMELT) CKE=CKL
ENDIF

DENP=DENM
CP=CSTAR(I,K)

IF(I.EQ.1) CKTES1 (K)=CKN

VOLP= ( (R+DR/2)**2 .0~ (R-DR/2) **2.0) *3.1416*DZ*NTESTU

IF(T(I,K).LT.T1l) THEN
QPCM=QPCM+DENS“VOLP*CS* (T (I, K) -TSTART)
QMELT=QMELT

ENDIF

IF(T(I,K).GE.T1.AND.T (I, K).LE.T2) THEN
QPCM=QPCM+DENS*VOLP*CS* (T1-TSTART) +DENM*VOLP* (FH (I, K) -H1)
QMELT=QMELT+DENM*VOLP* (FH (I, K) ~-H1)

ENDIF

IF(T(I,K).GT.T2) THEN
QPCM=QPCM+ DENS*VOLP*CS* (TMELT-TSTART) +DENM*VOLP*HFUSE

$ +DENL*VOLP*CL* (T (I, K) -TMELT)
QOMELT=QMELT+DENM*VOLP*HFUSE

ENDIF

CHETUEERLINTIEI

C=-CKW*F1l

A=2.0*DENP*CP*DZ**2.0/DT+ (CKW+CKE) *F1

B=-CKE*F1l

D2= (DZ**2.0*CKN* (R+DR/2.0) /R/DR**2,0) *F
D3=(D2**2.0*CKS* (R-DR/2.0) /R/DR**2_0) *F
D1=2.0*DENP*CP*DZ**2,0/DT-D2-D3

IF(I.EQ.1l) D8=(2.0*D2**2,0*CKN* (R+DR/4) /R/DR**2.0) *F

IF(I.EQ.1.0R.I.EQ.NR) THEN
IF(I.EQ.]1) D=(D1+D2-D8)*T(I,K)+D3*T(I+1,K)+D8*TVOLD (K)
IF(I.EQ.NR) D=(D1+D3)*T(I,K)+D2*T(I-1,K)
ELSE
D=D1*T(I,K)+D2*T(I-1,K)+D3*T(I+1,K)
ENDIF
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128

C

IF(D1.LT.0.0) WRITE(6,128)I,K
FORMAT (1X, 'Dl=(-) IN ROOP3 I,K=',62(2X,I3))
IF(D1.LT.0.0) GO TO 1000

IF(K.EQ.1) THEN
C=0.0
A=A-CKW*F1
B=B
D=D

ENDIF

IF(K.EQ.NZ) THEN
C=C
A=A-CKE*F1
B=0.0
D=D

ENDIF

Cc TDMA ALGORITHM

C

160

170
180

195
193

IF(K.EQ.1l) THEN

P (K)=-B/A

Q(K)=D/A

ELSE

P (K)=-B/ (A+C*P (K-1))
Q(K)=(D-C*Q(K~-1)) / (R+C*P (K-1))
ENDIF

IF (NDT.EQ.1) THEN
QVTES (K) =NTESTU*CKTES1 (K)* (2.0%*3,1416* (RO-DR/4) *DZ2)
S * (T (I,K)-TVOLD(K))/ (DR/2)
DQDATE (K) =QVTES (K) / (NTESTU*2.0*3.1416*RO*D2)
ENDIF

CONTINUE

DO 170 Kl=1,NZ

K=N2+1-K1

IF(K.EQ.NZ) TT(I,K)=Q(K)

TF(K.NE.N2) TT(I,K)=P(K)*TT(I,K+1)+Q(K)
CONTINUE
CONTINUE

DO 193 K=1,N2
DO 195 I=1,NR
T(I,K)=TT(I,K)
CONTINUE
CONTINUE
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IF (NADI.EQ.123) GO TO 1000

C
CEEaEEEEEEEEELEELLELLEEEEEEEEEEEELEEEEEEELEEEEEEEEEGEELELLELSEEES
Cc &&886&658& COMPUTATION FOR THE SECOND HALF TIME STEP &&&6&&&&&
C
400 DO 380 K=1,Nz
DO 360 I=1,NR

R=RO-(I-0.5) *DR

C it
TP=TOLD (I, K)

IF(I.EQ.1) TN=TP+2* (TVOLD(K)~-TP)* (1-DR/ (4*R0O))
IF(I.EQ.NR) TS=TP
IF(K.EQ.1) TW=TP
IF(K.EQ.N2Z) TE=TP

IF(I.NE.1) TN=TOLD(I-1,K)
IF(I.NE.NR) TS=TOLD(I+1,K)
IF(K.NE.1) TW=TOLD(I,K-1)
IF(K.NE.NZ) TE=TOLD(I,K+1)

IF(TP.LE.TMELT) THEN

IF (TN.LE.TMELT) CKN=CKSS
IF(TS.LE.TMELT) CKS=CKSS
IF(TW.LE.TMELT) CKW=CKSS
IF (TE.LE.TMELT) CKE=CKSS

IF (TN.GT.TMELT) CKN=CKM

IF(TS.GT.TMELT) CKS=CKM

IF (TW.GT.TMELT) CKW=CKM

IF (TE.GT.TMELT) CKE=CKM
ENDIF

IF (TP.GT.TMELT) THEN
IF(TN.LE.TMELT) CKN=CKM
IF(TS.LE.TMELT) CKS=CKM
IF (TW.LE.TMELT) CKW=CKM
IF(TE.LE.TMELT) CKE=CKM

IF(TN.GT.TMELT) CKN=CKL

IF{(TS.GT.TMELT) CKS=CKL

IF(TW.GT.TMELT) CKW=CKL

IF(TE.GT.TMELT) CKE=CKL
ENDIF

DENP=DENM
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Clini

328

CP=CSTAR(I,K)

AEERRRERE

C=-CKN* (R+0.5*DR) *F1
A=2.0*DENP*CP*R*DR**2,0/DT+ (CKN* (R+0.5*DR)
$+CKS* (R-0.5*DR) ) *F1

B=-CKS* (R-0.5*DR) *F1
D4=(R*DR**2.0*CKW/D2**2.0) *F

DS5= (R*DR**2  Q*CKE/DZ**2_.0) *F

IF(K.EQ.1) D4=0.0

IF(K.EQ.N2Z) D5=0.0
D1=2.0*DENP*CP*R*DR**2_0/DT-D4-D5

IF(K.EQ.1.0R.K.EQ.N2) THEN
IF(K.EQ.1) D=D1*T(I,K)+D5*T(I,K+1)
IF(K.EQ.N2Z) D=D1*T(I,K)+D4*T(I,K-1)

ELSE
D=D1*T (I,K)+D4*T(I,K-1)+D5*T (I, K+1)

ENDIF

IF(D1.LT.0.0) WRITE(6,328)I,K
FORMAT (1X, 'D1=(-) IN ROOP1l I,K=',62(2X,I3))
IF(D1.LT.0.0) GO TO 1000

IF(I.EQ.1) THEN

C=0.0

A=A+CKN*R*F1l

B=B
D=D+2.0*CKN* (R+DR/4) *TV (K) *F1
D=D+2.0*CKN* (R+DR/4) * (TVOLD (K) +DTV (K} ) *F1
ENDIF

IF (I.EQ.NR) THEN

C=C

A=A-CKS* (R-DR/2.0) *F1

B=0.0

D=D
ENDIF

C TDMA ALGORITHM

360

IF(I.EQ.1) THEN

P(I)=-B/A

Q(I)=D/A

ELSE

P(I)=-B/ (A+C*P(I-1))
Q(I)=(D-C*Q(I-1))/ (A+C*P(I-1))
ENDIF

CONTINUE
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DO 370 Il1=1,NR
I=NR+1-I1
IF(I.EQ.NR) TT(I,K)=Q(I)
IF(I.NE.NR) TT(I,K)=P(I)*TT(I+1,K)+Q(I)
370 CONTINUE
380 CONTINUE

DO 310 K=1,N2Z
QVTES (K) =NTESTU*CKTES1 (K) * (2.0*3.1416* (RO-DR/4) *DZ) *
$ (TT(1,K)-TV(K))/(DR/2.0)
310 CONTINUE

IF(NADI.EQ.4) GO TO 1000

600 DO 393 K=1,N2Z
DO 395 I=1,NR
T(I,K)=TT(I,K)
TOLD(I,K)=TT(I,K)

395 CONTINUE

393 CONTINUE

1000 RETURN
END

ARk RXARA Ak hkkkkkkhkk

* SUBROUTINE HWANGBO *

LR SRR RS S LSS R ERY

SUBROUTINE HWANGBO

ONE DIMENSIONAL CAPILLARY LIQUID FLOW

QVL (K) =~ EVAPORATION (-) OR CONDENSATION (+) RATE PER UNIT HEAT
PIPE LENGTH (W/M)

VISLIQ = LIQUID DYNAMIC VISCOSITY (NS/M2)

TENLIQ - LIQUID SURFACE TENSION (N/M)

LAMBDA = LIQUID LATENT HEAT (J/KG)

REAL *8 TV (100)
DIMENSION MDOT (100)
DIMENSION ALPHA(101),ALPHAD(101),0MEGA(101),SAT(101)

DIMENSION WIDTH(101),DEPTH(101),A0(101),A1(101),QTERM(101)
DIMENSION VOLFLW(101),DVDALP(101),W(S),V(5),QVL(100)
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COMMON /HPIPE/ TV,DQDATEE(100),2L,DZ,NZ,NDT,QVTES(100},
SNTESTU, TIME, KBURN, NWRITE, XWRITE, NGROV, RW,NADIA, PV (100)
COMMON /LIQ/ QV(100),PL(100), SUMQVI

$ CL,N2zP1,WIDBAR, DEPTHG, DENL, VISLIQ, TENLIQ, LAMBDA

C1 KBURN=0

DO 3 K=1,N2
K1=NZ-K+1
QVL(K1)=~1.0*QV (K) /NGROV/DZ
3 CONTINUE

C **wxx%xx BOUNDARY AND INITIAL CONDITIONS *#**#*xx
DO 5 K=1,NZP1l
DEPTH (K) =DEPTHG
WIDTH (K) =WIDBAR
5 CONTINUE

C GUESS ALPHA (1), OMEGA(1l)
ALPHA(1)=3.1416/2.0
OMEGA (1)=0.0

DO 10 K=1,NZP1

X=DEPTH (K) /WIDTH(K) /2.0
AO(K)=-0.7058+0.8685*X+0.1646*X**2,0-0.0145*X**3.0
Al (K)=0.1624+0.3167*X-0.1075*X**2.0+0.0073*X**3.0
QTERM (K) =VISLIQ/ (TENLIQ*DENL*WIDTH(K)**3.0)

VOLFLW (K) =- (A0 (K) +Al (K) *ALPHA (K))

DVDALP (K) =-Al (K)

IF (ALPHA(K) .LT. (3.1416/180.0)) THEN
KBURN=NZP1-~K

GO TO 30

ENDIF

IF (K.EQ.NZP1) GO TO 30

VOLF=VOLFLW (K)
DVDA=DVDALP (K)
W(1)=0.0
V(l)=0.0

DO 20 N=1,4

ALP=ALPHA (K) +0.5*DZ*W (N)
OME=0OMEGA (K) +0.5*D2*V (N)

W (N+1) =OMEGA (K) +0.5*DZ*V (N)

V(N+1) =~ (DVDA/VOLF+1.0/TAN(ALP) ) * (ABS(OME) ) **2.0
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cC
cc
cC
cC

CcC
ccC

aO000n0n

20

10

30

50

65
60

$ +QTERM (K) * (QVL (K) /LAMBDA) / (VOLF*SIN (ALP))
CONTINUE
ALPHA (K+1)=ALPHA (K) + (DZ/6.0) * (W (2)+2.0*W({3)+2.0*W(4) +W(5))
OMEGA (K+1) =OMEGA (K) + (DZ/6.0) * (V(2)+2.0*V(3)+2.0*V(4) +V(5))
CONTINUE
DO 50 K=1,NZP1-KBURN
MDOT (K) =VOLFLW (K) *SIN (ALPHA (K) ) *OMEGA (K) /QTERM (K)
CONTINUE

IF ((NDT/NWRITE) .EQ. (NDT/XWRITE)) THEN

WRITEE (6, *) ' !

WRITEE (6, *) ' KBURN="', KBURN

WRITEE (6, *) " '

WRITEE (6, *) " K ALPHAD OMEGA MDOT'

DO 60 K=1,NZP1-KBURN

ALPHAD (K)={180.0/3.1416) *ALPHA (K)

WRITEE (6, 65) K, ALPHAD (K) , OMEGA (K) , MDOT (K)
FORMAT (1%, 14,2 (2X,F10.5),2X,F11.6)
CONTINUE

ENDIF
RETURN

END

XA RKRRKkAKXITAKRI KKKk khkk

* SUBROUTINE LIQUID *

ARAARARANRAR AN AN AR AR AN

SUBROUTINE LIQUID

ONE DIMENSIONAL CAPILLARY LIQUID FLOW

VISLIQ
TENLIQ
LAMBDA

- LIQUID DYNAMIC VISCOSITY (NS/M2)
- LIQUID SURFACE TENSION (N/M)
- LIQUID LATENT HEAT (J/KG)

REAL *8 TV(100), KPERM

DIMENSION QL(100),DELPL(100),DPVPL(100)
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COMMON /HPIPE/ TV,DQDATE (100),2L,DZ,NZ,NDT,QVTES(100),
SNTESTU, TIME, KBURN, NWRITE, XWRITE, NGROV, RW, NADIA, PV (100)
COMMON /LIQ/ QV(100),PL(100), SUMQVI, KPVMIN, PCMAX, DPVPLMAX,

$ CL,NZP1,WIDBAR, DEPTHG, DENL, VISLIQ, TENLIQ, LAMBDA

FLREL=14.3

RM=RW+DEPTHG/2

AW=2.0*3.1416*RM*DEPTHG

EPS=NGROV*WIDBAR/ (2.0*3.1416*RM)
RHL=2.0*WIDBAR*DEPTHG/ (2. 0*WIDBAR+2. 0*DEPTHG)
KPERM=2.0*EPS*RHL**2,0/FLREL

FL=VISLIQ/ (KPERM*AW*DENL*LAMBDA)

QL (KBURN+1) =QV (KBURN+1)

DO 10 K=KBURN+2,NADIA
QL (K) =QL (K-1) +QV (K)
10 CONTINUE

DO 20 K= NZ, KBURN+1l, -1

IF(K.GT.NADIA) PL(K)=PV(K)
IF (K.LE.NADIA) THEN

DELPL (K) =-FL*QL (K) *D2
PL(K)=PL{(K+1)+DELPL (K)
ENDIF

20 CONTINUE
DO 30 K=KBURN+l,NADIA
DPVPL (K) =PV (K) -PL (K)
30 CONTINUE
DPVPLMAX=DPVPL (KBURN+1)
IF (DPVPL (KBURN+1l) .GE.PCMAX) THEN
DO 60 K=KBURN+1,NADIA
IF(DPVPL (K) .GT.PCMAX) KBURNNEW=K-1
60 CONTINUE
ENDIF

IF (DPVPL (KBURN+1) . LT.PCMAX.AND.KBURN.EQ.0) KBURNNEW=KBURN
IF (DPVPL (KBURN+1) .LT.PCMAX.AND.KBURN.NE.0) KBURNNEW=KBURN-1

KBURN=KBURNNEW
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KBURN=0

RETURN
END
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